
A New Configurable and Parallel Embedded
Real-time Micro-Kernel for Multi-core platforms

Antonio Paolillo, Olivier Desenfans, Vladimir Svoboda, Joël Goossens, Ben Rodriguez

PARTS Research Center, Université Libre de Bruxelles, Mangogem S.A. and HIPPEROS S.A.
Corresponding author: antonio.paolillo@ulb.ac.be

Abstract—One of the main on-going initiatives of the PARTS
Research Center together with HIPPEROS S.A. is the creation of
a new Real-Time Operating Systems family called HIPPEROS.
This paper focuses on the design and the implementation of
its new real-time multi-core micro-kernel. It aims to address
the challenge of efficient management of computing resources
for competing real-time workloads on modern MPSoC platforms
while maintaining the level of assurance and reliability of existing
production systems. The objective of this paper is to present an
overview of its inner architecture.

I. INTRODUCTION

For the past twenty years, real-time theory has widely
explored the possibility to use multi-core and many-core plat-
forms for embedded systems. However, while this topic seems
to be very mature in the literature, the safety-critical software
industry still relies on uni-core techniques for operating system
implementations. The industry state-of-the-art regarding multi-
core platforms is to fully separate the processing resources
in time and space isolated partitions with very few possible
communication channels between the different partitions and
therefore to consider that each partition operates as an inde-
pendent uni-core platform. Examples of de facto standards for
these techniques are ARINC653 [1] and AUTOSAR [2].

While from a conservative point of view these are the
most reliable and predictable solutions, these are not the best
available options in the real-time research w.r.t. efficiency,
resource utilisation and cost. Moreover, the rising demand of
computational power per silicon area happening in every do-
main — including safety-critical systems — puts a pressure on
the low-level, middleware and kernel developers to implement
efficient policies for real-time process management.

In recent years, efforts in the research community have
been made to adapt existing general-purpose kernels such as
Linux in order to provide a real-time execution environment
suitable for the evaluation of efficient multi-core real-time
scheduling and resource allocation policies [3], [4]. The main
advantage of this approach is to reuse the existing kernel code
base which has been tested and validated by millions of users
worldwide. However this approach cannot be directly exploited
in production systems. Indeed Linux is not originally intended
nor designed to support neither hard real-time constraints nor
safety-critical applications. Moreover it is not conforming to
the highest demanding certification standards of this industry
such as DO-178-B (level A, B) or ISO26262. As a conse-
quence, the latest real-time multi-core algorithms have not
been tested in a strict and realistic hard real-time environment
yet. As stated by Brandenburg in [5]:

Ideally, [...], worst-case kernel overheads [...]
should be determined analytically. However, for the
foreseeable future, this will likely not be possible
in complex kernels such as Linux. Instead, it would
be beneficial to develop (or extend existing) µ-
kernels of much simpler design with LITMUSRT-like
functionality.

This kind of kernel would have to be built from the ground
up with hard real-time and multi-core constraints integrated
as parts of its base design principles. This would allow for
simpler, finer-grained measurements of the overheads intro-
duced by different implementations of the various solutions
the literature has to offer. Moreover the architecture of this
kernel must scale with an increasing number of cores to allow
execution on many-core platforms.

In order to address the challenge of providing efficient
multi-core kernel implementations while still providing the
same level of assurance and reliability of the existing indu-
stry quality standards, the PARTS Research Center, together
with the company MangoGem S.A., launched the HIPPEROS
project in 2010. The development of the HIPPEROS kernel
started in June 2013. HIPPEROS aims to provide a family
of RTOS solutions, each adapted specifically to the different
needs of the real-time system designer and including the
implementation of the latest results of the research community.
It stands for HIgh Performance Parallel Embedded Real-time
Operating Systems.

II. SYSTEM OVERVIEW

We started the project by developing a new kernel from
scratch running as a bare-metal system on ARM and x86
systems. The objective is to have a fully configurable kernel,
running transparently on different architectures and platforms
with an arbitrary number of cores, that will be the seed of
the different RTOS solutions mentioned above. With such a
flexible design it would be possible to deeply explore the
practicability of real-time theory solutions. To reach this the
kernel has the following design characteristics:

• for scalability reasons, it has a distributed asymmetric
micro-kernel architecture, meaning that each core can
execute a local part of the kernel (the lightweight and
very local operations like simple system calls or process
context switching), while a dedicated core executes the
heavy parts of the kernel (complex system calls, schedu-
ling decisions, shared resources handling, etc), allowing
to execute several parts of the kernel in parallel; to the

25



best of our knowledge, this kernel design approach is very
rare for real-time systems although it is already used in
high performance computing and scalable non real-time
kernels [6]–[8];

• it is configurable at build-time to efficiently suit the
different needs of the system designer or application
developer; e.g. the scheduling policy or the resource
allocation protocol for real-time processes can be chosen
at build-time; notice that only the chosen policies will be
embedded in the production executable binary image of
the kernel (mainly for code size reasons);

• to manage hard real-time workloads, it implements the
popular process model used in the real-time scheduling
research literature: the concept of periodic and sporadic
tasks generating jobs to schedule with a finite time budget
and deadline.

By combining the available configuration options, the
HIPPEROS build system is able to generate a large variety of
RTOS solutions, ranging from a low-overhead statically linked
run-time executive implementing the simple rate monotonic
scheduling policy [9] to a full fledged micro-kernel based ope-
rating system supporting several independent ELF applications
with memory isolation between processes, inter-core message
passing IPC and optimal scheduling policies.

This distributed and highly configurable kernel supporting
real-time workloads aims to provides both a productive system
to industry application designers and an experimental software
platform to real-time researchers. The goal is to test, validate
and run into production low-overhead energy efficient hard
real-time systems running on modern embedded multi-core
platforms with different instruction set architectures.

III. PROCESS MODEL

To derive straightforward implementations of state-of-the-
art algorithms, we chose to faithfully interpret the task model
w.r.t. real-time scheduling theory. We map the popular task
model of real-time literature [9] to the internal HIPPEROS
process abstraction. More specifically, we implemented con-
strained deadline sporadic and periodic tasks.

A set of tasks is statically registered to the kernel. Each
task is configurable by providing the following information: an
executable program and timing information (sporadic/periodic,
offset, deadline, period and worst-case execution time). Time
unit for these values is the number of kernel ticks, a configu-
rable atomic time period. At kernel initialisation time, the
process manager module registers one process for each of these
tasks and configures it according to the task parameters.

The scheduler API is preemptive and priority-based: each
time a process changes state, the scheduler module is called to
decide if some process context switches must occur according
to their priority. If a real-time process overruns its associated
task’s WCET or misses its deadline, a configurable policy
is applied. It could be that the process is killed (the reason
being the non-respect of its contract with the kernel), the event
ignored or the priority of the process changed.

These simple mechanisms allow to easily implement and
evaluate theoretical multi-core scheduling algorithms (like
RUN [10], U-EDF [11] or power- and thermally-aware algo-
rithms) and the associated resource allocation protocols. The

model could be easily extended in the future to support mixed-
criticality tasks: it would require vectorial timing information
rather than scalars.

IV. ASYMMETRIC KERNEL ARCHITECTURE

A recurring problem in kernel design for multi-core plat-
forms is how to distribute the privileged work amongst the
different processing resources. Usual implementations like
Linux use a symmetric design, where each core goes through
the same kernel code and protect data structures with fine-
grained lock mechanisms. However, this approach can lead to
kernel serialisation, meaning that each kernel thread is actually
executed sequentially (each waiting for the completion of one
other) and has been proven not to scale with an increasing
number of cores [6], [12]. Furthermore, in [12], Cerqueira et al
suggest an asymmetric distribution of the work, where one core
has the responsibility to execute the scheduler and dispatches
the processes to the other cores through message passing.

We adopted a similar solution in the HIPPEROS kernel
design: a designated core called the master core is responsible
for managing the global resources, keeping a coherent state of
the system and calling the scheduler to decide which process
has to be preempted or dispatched. We went further than [12]
by implementing this design not only for the scheduler but also
for system calls and process message passing mechanisms. It
allows the kernel to be executed in parallel.

The principle is the following: each time a scheduling
decision has to be made (e.g. a process changes state), the
master core must be woken up. When the master core has to
notify another core (called slave core) that it has to execute a
context switch (process preempted or dispatched), the master
sends a software-generated inter-processor interrupt (IPI) to the
slave core to notify it of the changes. When a process executing
on a slave core calls a system call that may impact scheduling,
the remote system call mechanism is used. The slave part of
the kernel serialises the system call arguments, triggers an IPI
to the master and goes back to user mode to execute a busy
loop waiting for the response of the master part of the kernel.
Notice that this busy loop is process-specific, executed in user
mode and can be interrupted by a context-switch request of
the master core.

In opposition to the symmetric approach, this master/slave
kernel architecture requires almost no locking mechanism as
the system’s global state must not be shared and is only visible
by the master core.

To correctly implement the system calls and the context
switches, some small data structures are shared between the
master and each slave. These data structures are currently
protected with mutexes, and wait-free data structures are
considered to be integrated for the foreseeable future. Notice
that as the contention on these data structures is limited by
the process-to-kernel interactions, several slave cores require
distinct mutexes. Therefore, the peak contention of the con-
currency mechanisms is low. In the long term, our goal is to
be able to predictably bound this contention. As the shared
data structures between master and slaves are limited to what
is necessary for system calls and context switches and the
rest of the system state (e.g. scheduler data structures) is

26



maintained only by the master, we also expect to have limited
performance-degrading cache-line bouncing.

The inter-process communication (IPC) scheme is built on
top of this master-slave RPC mechanism. We support two
different API for IPC: the Copy buffer IPC (CB-IPC), where
the message is copied from the sender buffer to the receiver
buffer and the Zero copy IPC (ZC-IPC), where a page is shared
between the sender and the receiver (no copy is then performed
when passing the message). When a process calls the send or
receive system calls, the master core is warned through an IPI
to update the process states accordingly. However, in case of
CB-IPC, the message is copied locally by the slave to avoid
overloading the master with memory operations.

We expect this approach to scale up to 8 cores of the
embedded platform. More cores contacting the master would
eventually overload it, resulting in a situation where some
running processes have to wait for the execution of all the
system calls of the processes executing on the other cores. For
more cores (e.g. for execution of HIPPEROS on a many-core
platform), we foresee the usage of techniques like clustering,
where several independent micro-kernel instances would be
executed in parallel, like the Helios Satellite Kernels [8]. Each
parallel kernel would be responsible of a subset of the platform
processing cores with independent scheduling, memory mana-
gement and process message passing. Processes on different
clusters that want to communicate would use a dedicated inter-
kernel communication channel. This mechanism still needs to
be implemented and evaluated.

V. KERNEL CONFIGURABILITY

As HIPPEROS targets deeply embedded systems, the
majority of options is configured at build-time to suit the
specific requirements of the embedded software. Policies and
components must then be chosen at build-time.

One of the goals of the kernel is to be portable across
a large variety of architectures and platforms. The kernel
currently supports ARM and x86 architectures. There is a wide
variety of hardware platforms implementing these architectures
and these targets can have very different levels of comple-
xity and features. For example, a Memory Management Unit
(MMU) can be present or not on a given platform. Therefore,
the kernel must be configurable to the point of presenting
several memory models, according to the presence or absence
of a MMU. It is necessary to provide a MMU-free memory
model as some of the critical embedded platforms used in
production today are still MMU- and cache-free.

The scheduling policy (Partitioned-RM, Global-EDF, etc.)
in place is also a modular component that is chosen at kernel
build-time. For energy efficiency reasons, the number of cores
of the target platform actually used can be configured too:
the user could decide to only use a subset of the resources
available on the target platform. Moreover, the set of cores
could be shared between several operating systems (several
HIPPEROS instances as mentionned in section IV or other
OSes). Therefore, decide which cores are used or not will allow
HIPPEROS to be suited for mixed-criticality environment with
space partitioning: the execution of several OSes with various
levels of criticality on top of hypervisor software.

VI. CONCLUSION

In this paper, we introduced a new configurable kernel
designed for embedded multi-core platforms. In opposition
to the traditional research approaches, our kernel is written
from scratch and explores new ways of distributing privileged
work among the different cores of the platform by relying
on its asymmetric architecture. System reliability is enforced
by design using a micro-kernel architecture. By implementing
scalable policies inside the kernel, it will be adapted to modern
and future multi-/many-core platforms.

To enable straightforward implementation of existing real-
time scheduling strategies, we faithfully implemented the lite-
rature task model: periodic and sporadic jobs with a limited
execution budget and a deadline.

Thanks to the high level of configurability and modularity
built in the kernel by design, we expect to provide a new
benchmarking platform to the research community.

Future developments will involve the integration of the
HIPPEROS RTOS in mixed-criticality environments where a
RTOS running highly critical workloads can be executed in
parallel with a general purpose OS like Linux to make an
effective usage of the modern MPSoC platforms.

A free academic license of the product will be available for
distribution. The RTOS is now being validated for various use
cases within the ARTEMIS CRAFTERS project by the PARTS
Research Center and MangoGem S.A.. This work is supported
by the Innoviris grant RBC/12 EUART 2a. The kernel is used
in industrial Proof of Concept projects by HIPPEROS S.A.,
which further develops it into a full-blown certifiable RTOS.
HIPPEROS is a registered trademark of HIPPEROS S.A..

REFERENCES

[1] Avionics Application Software Standard Interface, Airlines Electronic
Engineering Committee, Aeronautical Radio INC, June 2013.

[2] Guide to Multi-Core Systems, AUTOSAR, March 2014.
[3] J. M. Calandrino, H. Leontyev, A. Block, U. Devi, and J. H. Anderson,

“LitmusRT: A testbed for empirically comparing real-time multiproces-
sor schedulers,” in 27th IEEE Int. Real-Time Systems Symposium, 2006.

[4] D. Faggioli, M. Trimarchi, F. Checconi, M. Bertogna, and A. Mancina,
“An implementation of the earliest deadline first algorithm in Linux,”
in 24th Annual ACM symposium on Applied Computing, 2009.

[5] B. Brandenburg, “Scheduling and locking in multiprocessor real-time
operating systems,” Ph.D. dissertation, The University of North Caro-
lina, 2011.

[6] D. Wentzlaff and A. Agarwal, “Factored operating systems (fos): The
case for a scalable operating system for multicores.” SOSP, 2009.

[7] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania, “The multikernel: A new
os architecture for scalable multicore systems.” SOSP, 2009.

[8] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, and G. Hunt,
“Helios: Heterogeneous multiprocessing with satellite kernels.” SOSP,
2009.

[9] J. W. S. Liu, Real-Time Systems. Prentice Hall, 2000.
[10] P. Regnier, G. Lima, E. Massa, G. Levin, and S. Brandt, “RUN: Optimal

multiprocessor real-time scheduling via reduction to uniprocessor,” in
IEEE 32nd Real-Time Systems Symposium, Nov. 2011.

[11] G. Nelissen, V. Berten, V. Nelis, J. Goossens, and D. Milojevic, “U-
EDF: An unfair but optimal multiprocessor scheduling algorithm for
sporadic tasks,” in ECRTS, 2012.

[12] F. Cerqueira, M. Vanga, and B. Brandenburg, “Scaling global scheduling
with message passing,” in Proceedings of the 20th IEEE Real-Time and
Embedded Technology and Applications Symposium, April 2014.

27


