HIPPEROS

A Song of Research and Development

Antonio Paolillo

Huawei Dresden Research Center

FOSDEM 2020 - micro-kernel devroom

2th February 2020 - Brussels, BELGIUM

Disclaimer

This talk reflects my personal view only,
not the one of my previous or current employer.

A Song of Research and Development

1keR, Yve§

T[N

© HIPPEROS S.A.

PAUL

www.hipperos.com

Me? Highlights:

e 2006-2011-Brussels

o Computer Science master’s degree (ULB)

UNIVERSITE
LIBRE
DE BRUXELLES

e 2012-2019 - Brussels
o Backto university and Ph.D (ULB)

3
>
o In parallel: joined a spin-off project (HIPPEROS)

e 2019 -today-Dresden
o Huaweiresearcherin OS / micro-kernel field \‘)
\ 'l
L —

o Dresden Research Center
HUAWEI

More info: https://antonio.paolillo.be

https://antonio.paolillo.be/

Huawei Dresden Research Center

e Applied research on OS & micro-kernels
o Practical research & internal contributions
o Academic contributions are targeted
o Startedin February 2019
O

20+ researchers
e |nterests:

o Dependable OS techniques v v

m Scalable kernel architecture
m Kernel design exploration UAWE I
m Formal verification, testing & certification I I

o Virtualization technique

e Contact me to know more and have some fun with us :-)

Agenda

1. The human story behind the RTOS

2. HIPPEROS high level features

3. Run-time model & build environment

4. Architecture overview and main design choices
5. Research results achieved

6. Conclusions and bright future

Agenda

1. The human story behind the RTOS

Alma mater

Home of research

UNIVERSITE

LIBRE
DE BRUXELLE

S

University’s missions (or roles)

& Teaching

§ Research

Valorisation

University’s missions

& Teaching

§ Research

Valorisation

A spin-off: from science to a commercial product

—)

Parallel Architecture for Real-Time Systems

W(SI’ 77,,J-',$,t1/>

 WifST. € ce)Si€ €
(Sp—)AA e v’kcﬂJ=Cﬂ

Parallel Architecture for Real-Time Systems

$HIPPEROS

Predictable Real-Time, Proven Performance

High

I

P erformance
P arallel

E mbedded

R eal-time

O perating

S ystems

High

I

P erformance
P arallel

E mbedded

R eal-time

O perating

S ystems

Basic idea

Create a company selling products and services around the topic of Real-Time
Operating Systems, including the creation of a new micro-kernel for high-end
with an innovative software architecture, backed-up by research

(both theoretical and applied), designed, developed and maintained with “good” (and
agile...) software methodology.

Within this business, maintain strong links with universities and the research world, by
validating the design in an academic environment and continuous research activities.

The very ambitious objective was to deploy the RTOS in any device imaginable...

2006 - project kickoff

e 2research labsin ULB university
o Theory of real-time scheduling
http://parts.ulb.ac.be

o Micro-electronics and digital system design
BEAMS-EE in http://www.bruface.eu/

e Research entrepreneur
o Fundings

o Good storytelling

o Firstdesignideas

http://parts.ulb.ac.be
http://www.bruface.eu/

Fall 2012

e The developers joined! (including me)
e Fundings provided by the CRAFTERS project

e Foundations for our new kernel

Embedded development

2013 - 2015

e Started “Sprint 0” in April 2013 and hands-on development in June 2013
“our code-base is returning in user mode”

e Spin-off company “HIPPEROS” created in 2014

e CRAFTERS funded project

e Met Andrew Tanenbaum “only the beginning”

2016 -2019

e Maturing the product, lots of R&D activities
e Finishing the Ph.D [1]

e Tulipp funded H2020 project

o Use cases for the RTOS
o Features roadmap (networks, libraries, etc.)

e 4to15people...depending how (and when) you count ;-)
> 4-5 developers/testers/designers

[1] Everything related to my thesis is publicly available: https://antonio.paolillo.be/research.html

https://antonio.paolillo.be/research.html

Why a new kernel / RTOS /...?

Facilitate development of high performance / low-power / safety-critical applications
Modern hardware used safely, exploitation of hardware parallelism

Need a low footprint but feature-rich RTOS

Why a new kernel / RTOS /...?

Facilitate development of high performance / low-power / safety-critical applications
Modern hardware used safely, exploitation of hardware parallelism
Need a low footprint but feature-rich RTOS:

multi-thread support

power management support

real-time scheduling support & real-time guarantees
parallelism at kernel level that scales

support for heterogeneous platforms

possibly, certification

oS Uk wh =

Why a new kernel / RTOS /...?

Facilitate development of high performance / low-power / safety-critical applications
Modern hardware used safely, exploitation of hardware parallelism

Need a low footprint but feature-rich RTOS:

support for heterogeneous platforms
possibly, certification

1. multi-thread support
2. power management support .
. .) To our knowledge, this
3. real-time scheduling support & real-time guarantees | combination of requirements
4, parallelism at kernel level that scales was quite rare when the
project started.
5.
6.

Agenda

2. HIPPEROS high level features

Product Vision

OS for high-end embedded systems

e Performant
e Reliable
e Efficient

Demanding Applications

e Computer Vision
e Embedded Al
e Robotics

C Standard Library

Support for the standard C API
e POSIX-compliant
e Usercodeisstandard C/C++
Native API for additional features
® |SRs
o |PC
o
Supported toolchains
e GCC
e LLVM
e Xilinx SDSoC

POSIX Compliance

POSIX-compliant (PSE52 + useful bits)
e Multithreading
e Filesystem
e Networking
[

Required to support large frameworks (e.g.: OpenCV)

Supported architectures

ARMv7-A
e |MX6
e /yng-7000
ARMvS-A
e Zynq UltraScale+
x86
PowerlSA 2.06B (PowerPC 64 bits)
e QorlQ-T series
ARC EM2 (discontinued)

Device Drivers

FPGA Dynamic Partial Reconfiguration
Ethernet

SDIO
e FAT32/FAT16

CAN (experimental)

GPIO, 12C, SPI, UART, timers

Network

IPv4 and IPv6

Control, link, transport protocols, applications

e |CMP,IGMP, ICMPv6, MLD

e PPP,ARP, DNP (IPv6)

e UDP TCP

e DNS, SNMP, DHCP, HTTP, TFTP servers

Agenda

3. Run-time model & build environment

Task, Process & Threads

Tasks & Processes

e Application =set of tasks
e 1task > 1 process

® Process=task + OS structures

o Process state (active/inactive/blocked)

o Threads (active/inactive/processing/blocked)
o PageTable

e Real-time properties enforced by the OS

Tasks & Processes & Threads

e Thread =The schedulable entity

e 1 process- N threads

e 1thread - 1 context

e Inherit real-time properties from the process

e Fine-grained scheduling state

Create an application

In practice: build an application

CMakelists.txt \

B

Application

CMake

HIPPEROS
package

Tasks = C/C++ programs

#include <hipperos/hstdio.h>
int helloWorld _main(void)
{

h_printf("Hello, world!");

return EXIT_SUCCESS;

HIPPEROS application = set of pre-defined tasks

<?xml version="1.0"72>
<taskSet xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://www.hipperos.com/schema/TaskSet'">
<task>
<identifier>1</identifier>
<name>helloWorld</name>
<entryPoint>helloWorld_main</entryPoint>
<stackSize>4096</stackSize>
<recurrence>UNIQUE</recurrence>
</task>
</taskSet>

Task set file

<task>
<identifier>1</identifier>
<name>helloWorld</name>
<stackSize>8192</stackSize>
<recurrence>UNIQUE</recurrence>
<entryPoint>helloWorld_main</entryPoint>
<executableName>helloWorld</executableName>

e Timing parameters

</task> e Periodicity
<task>
<identifier>2</identifier> C d
<name>corelTask</name> ® ode

<stackSize>8192</stackSize>
<recurrence>PERIODIC</recurrence>
<entryPoint>periodicTask_main</entryPoint> Y Core afﬁnities
<executableName>periodicTask</executableName>
<timingInformation>
<offset>100000</offset>
<wcet>200000</wcet>
<deadline>300000</deadline>
<period>300000</period>
</timingInformation>
<flags>REALTIME</flags>
<coreAffinity>1</coreAffinity>
</task>

Task set file

<task>
<identifier>1</identifier>
<name>helloWorld</name>
<stackSize>8192</stackSize>

</task>

<task>
<identifier>2</identifier>
<name>corelTask</name>
<stackSize>8192</stackSize>

<flags>REALTIME</flags>

</task>

Configure the build with CMake

cmake_minimum_required(VERSION 3.5.1)
project(helloWorld C)

hipperosToolchainConfig()
hipperosReadKernelOptions("${KERNEL_SPEC_FILE}")

set (APP_GENERATED_HDR_DIR "${CMAKE_BINARY_DIR}/generated/include")

add_executable(${PROJECT_NAME} ${APP_DIR}/src/helloWorld/helloWorld_main.c)
target_link_libraries(${PROJECT_NAME} hipperos::api)
hipperosTaskConfig("${PROJECT_NAME}")

hipperosTaskSetConfig(
"${PROJECT_NAME}"
"$LAPP_GENERATED_SRC_DIR}"
"S${APP_TASK_SET_FILEPATH}"

Miscellaneous

® Processes atrun-time: 1-1 tasks in the task set

o No other tasks!
> very predictable system

o Dynamicity could be implemented

e Devicedrivers have a special flag: SYSTEM

Build environment

1. Customized kernel
2. Application build definition

3. Developer environment

Custom kernel for use case requirements

Each use case has its own purpose
e Requires some modules

e Do not use some other ones

Modules that are not needed may be removed at compile-time
e This decreases memory consumption

Application build environment provided

HIPPEROS is distributed with a CMake-based build environment

Easy definition of the system
Fast development loop with provided scripts

Controlled development environment (SDK)

Docker container image with the complete build environment

No issue due to interaction with other pre-installed tools

Build environments for different versions can co-exist on the same system
Native performance

Used both on continuous build servers and on developers' systems

Agenda

4. Architecture overview and main design choices

OS requirements

Requirements

e Multitasking
e Hardware abstractions
e Software abstractions (ex: libraries)

Challenges:

e Reliability of large software systems

° on complex hardware architectures
e Performance for demanding applications

e Securityinaconnected world

HIPPEROS features for reliability (1)

Micro-kernel based OS

(Nearly) everything runs in user-space
> where the complexity lies
> kernel stays simple

Very little code has the potential to crash the
whole system at run-time

User
Space

Kernel
Space

File
System |

Network I

Process management

Applications

HIPPEROS features for reliability (2)

Memory virtualisation

Full memory virtualisation
> Isolation of user processes

Access rights system (R/W/E)

o —

0xCo00 0000

0x3000 0000

_ o
0xFo00 0000

Reserved

@

Device 1

Device 2

0x2000 0000

0x1000 0000
Unused

0000

0x9000 0000

0x8000 0000

0x0000 0000

HIPPEROS features for

Hard Real-Time schedulers
Support for multicore HRT schedulers

Time Guards
Real-time monitors of execution time and deadlines

Master-Slave architecture

Efficient and predictable, avoids issues such as kernel locks
The master core computes the threads to schedule and fire
scheduling order to slave cores

Support of multiple scheduler models
Rate Monotonic (RM) and Earliest Deadline First (EDF)
Partitioned, global, U-EDF (experimental)

Priority inheritance / priority ceiling
Posix compliant API (also for SCOPE_¥)

HIPPEROS features for performance

e Performant schedulers
High utilisation systems are guaranteed to meet deadlines

e Fast communication
Safe zero-copy IPC channels

e Fast user-space abstractions
o Lightweight Multithreading and support for good users-space APl (OpenMP, OpenCV)
Fast user-space locks
User-level I/O mapping
FPGA reconfiguration support
Power Management module for energy efficiency

O O O O

HIPPEROS features for security

e The systemis designed at compile-time
o All processes known at design-time in the task set
o All processes are selected by the user

e No system tasks
o No hidden processes with special access rights

e |/Os (ex: network) are disabled by default

o The user only needs to prevent unwanted access on 1/Os he is actively using

e Isolated processes through MMU
o Least privilege principle

More details on the kernel software architecture

Well designed APl between modules

Kernel
e Allows to replace/choose components

that implement the same API
transparently

e Easethe design and transfer of
information among developers

Hardware Abstraction
Layer

Kernel modules

Kernel

= O I

scheduers [sysemat

e WritteninC
e Several variants of different modules (e.g. schedulers, resources)

HAL modules

HAL

e Writtenin C & Assembly
e The HAL must be written from scratch for each architecture;
some modules are platform-specific (e.g. UART)

HAL main features

The HAL provides:

e Entry points

o Boot

o System calls
o Exceptions
o Interrupts

e Inter-Processor Interrupts (IPIs)

Advantages of splitting Kernel and HAL

Easily port to new boards/architectures (only need to re-write the HAL)
Test the kernel without compiling the HAL (~ unit tests)
Test the HAL without compiling the kernel (~ platform tests)

Testing everything is still possible (~ integration tests and user tests)

Asymmetric kernel design [2]

Master kernel Slave kernel (really small)
e Handles system events e Executes master decision (context switches)
e Takes scheduling decisions e Executes local system calls
e Changes thread states e Forwards remote system calls to the master

e Executes remote system calls

[2] Antonio Paolillo, Olivier Desenfans, Vladimir Svoboda, Joel Goossens, Ben Rodriguez. A New Configurable and
Parallel Embedded Real-time Micro-Kernel for Multi-core platforms. ECRTS, OSPERT, Lund, Sweden, July 2015.

Core 0 - master

iftfiniil
N

Master kernel

Scheduler

User jobs II

IPI Context switch

Core 2 - slave

User jobs |I_/
Local IPC
os
services

Slave
kernel

Core 1 - slave

Remote
system call

Global IPC

M User jobs

i

==

Core 3 - slave

Slave
kernel

User jobs |

Advantages of asymmetric design

Ease of design
Facilitate onboarding, debugging, etc.
No complex network of kernel spinlocks to manage

Scalable solution [Cerqueira, 2014]
“Message passing” approach, less cache bouncing and less peak contention

Fine-grained IPC management and clustered approach to scale up (>10 cores)

[Cerqueira, 2014] F. Cerqueira, M. Vanga, and B. Brandenburg. Scaling Global Scheduling with Message Passing. RTAS
2014, Berlin, Germany.

Kernel execution

Kernel code is executed:

e Boot-time
e Interrupts/system calls > ISR handler

The kernelis

e Interruptible
e Not preemptible

Memory models

3 memory models

e No MMU (internal use)

e Single Page Table: one page table for the whole system
o Used when the kernel and the user tasks are statically linked together

e Independent: one page table per process (full isolation)

Inter-Process Communication

3 types of process-level communication

e Synchronous IPC
o Shared-memory page

The kernel protects the page from unwanted access during writes
HIPPEROS native API

0 copy
Ideal for 1-to-1 communication (large data transfer, e.g. SDIO drivers and file systems)
e Kernel buffers

o “Channels” (= local network ports) for the server to bind and waits

o Inspired by UDP communication

o ldeal for small control messages and many-to-one communication

O O O O

User-space device drivers

e Access device physical memory
o mmap () system call (extended)
o Granted to tasks marked as “system” (task set)

e Can be packaged as a library (as opposed to isolated tasks) for small systems

e Interrupt registration
o irq wait(size_ t id) system call (native HIPPEROS API)
Queuing of threads to processor interrupt lines
Thread is blocked and rescheduled when the IRQ is fired
IRQ is masked until next irg wait () callisissued
Thread must disable the interrupt source (e.g. driver)

O O O O

Agenda

5. Research results achieved

Research and Development

Importance of publishing results
resence in academia
esults on:

power management
mixed-criticality scheduling
memory centric scheduling

Some latest developments

Power

Universi

{anuo

—in hid

Poveraware o

e i
of ‘mmw‘d i

power consumptio
.mrnqmz'y wilize

benchit of
ohivalen sinlec

o paralllize it c
processing cores.
at 3 cost of increa
must_perform due
overhead of the c
e explore the ta
epctons i

& pow
non-rivi m probler

y help
conpuion o
However. the

tion form a compl

i his paper. v
deadiine parallel
pltform with uni

A New Configurable and Parallel] Embedded
Real-time Micro-Kernel for Multi-core platforms

verview of i

For the past b
explored the possitg
o for mbedd

pendent ni-core pi
these technigues

il from
mant elable and
avalsble options
Tesoure ahlstion
computatonsl pov
main — including

the low-leve, midd
etficient policis fo

o recent years

yet. As stted by B

Power Minimization for Parallel Real-Time Systems with

Malleable Jobs and Hc

us Frequencies

Antonio Paolillo, Joél Goossens

Research Cen
Cnivesie i d Bt and Mangogem 5 A
{antoniopaolill, joel goossens) @ulb.ac be

this work, we investigate (he potential benelit

[E=rn cior o 36 compared t th optimal non parlel

L. INTRobUCTION
Poveravare compuing i he foreront of enbedded

Pradeep M. Hettiarachchi, Nathan Fisher

Depastment of Compuer ¢
‘Wayne State University
P el OO

pabilis Tha .l the coes on the e iy e
constrained to execute t the same ate. For example. the Iniel
Seon E31200 constraint on the voltag
and frequency
v

in that
mhm.\v nambes of coneumet procesars thar 3 sk should
o power and meet its deadline. Our research

sy rh do 10 maset demands o e bty

e in porable device and docreaing the b

of embadied systcms i general. The de 1 educe sy

pover consumpton has e emibeddd sy dsignrs 10

increasingly uiize multcore processing arc oft-
e o S ot

et snlecor laoms s s pows iy
thermal dissipation [1]. For these power beneft o be.
iy ceutand, » Competey ystcms ik podacs e sy
to paralleliz its compuational workload across the mliple
ing cores. However, paralll computation often comes

18 cost of increasing the total computation that the system
must_perform due to communication and synchronization
overbead of the cooperating parallel processes. n this pape

We explore the trade-off between parallelzation of real-ime

applications and savings in the power consumpiion,
Obiining pover ey o rsbime sysiens s 3

non-trivial problem due to the fact that processor power-

managemen fsures (¢, ok rling/gaing. dynamic
voltagefTrequency scalng, ete.) ofien increase the exccution
ime of jobs s miching ok opsbeais
o e sy pover comsumpin; he inresed

x y pus

communicatonynconizaion oveesl.
o fom o complcted and non s el
1 s poer e ddees he abov, eoblems fo implc
i] s s e i
plaform with unique global voliage/equency scaling ca-

e algoritn fo e optimal freguency and
number of active cores for a set of paralll tasks executing
pon 2 procsing plfom with homogenous reqences
sprooed e scheduing ot
e 8 s o s o
Cive cor allocaton e bucn docrmine

be summarized as follows:

R el A
4

Rt n that
e offin g e
« We propose an exact offlne polynomal-time algorith
for determining the - optimal ency

me appli s we e next sectons,

igilcnt duction in syt power e psibe v when
ce of aralllism i liied. Our current 0 going wo

i evaiaring puralie implementations of sl applica

tions upon an actual hardware testbed is primarily motivated

Power-aware and parallel scheduling [3]

Combining DVFS/DPM with multi-threading in real-time systems to save more energy

Applications written with OpenMP

Approach validating with a full stack real-world embedded stack

e aMPSoCembedded board
e HIPPEROS RTOS with OpenMP library and real-time scheduler

e Oscilloscope probe to measure energy requirements

[3] Antonio Paolillo, Paul Rodriguez, Nikita Veshchikov, Joél Goossens and Ben Rodriguez. Quantifying Energy
Consumption for Practical Fork-Join Parallelism on an Embedded Real-Time Operating System. RTNS, Brest, France,

October 2016.

Experimental setup

Mixed-criticality scheduling [4]

Process-based (no per-thread criticality)
Mode changes when a WCET overrun occurs
Configurable per-process mode change policy
e Change period, kill, suspend...
“time guards” similar to seL4 temporal exceptions

e Modified WCET overrun mechanism

[4] Antonio Paolillo, Paul Rodriguez, Vladimir Svoboda, Olivier Desenfans, Joel Goossens, Ben Rodriguez, Sylvain
Girbal, Madeleine Faugere, Philippe Bonnot. Porting a safety-critical industrial application on a mixed-criticality
enabled real-time operating system. WMC, RTSS, Paris, December 2017.

Avoiding memory interferences [5]

Shield execution time from interferences in the memory sub-system

e Last-Level Shared Cache: partition among cores

e Memory Bus: concept of exclusive memory phases to prefetch/write-back data.
Execution then does not suffer from LLC cache misses > no opportunities for
contention in memory bus

[5] Juan M Rivas, Joél Goossens, Xavier Poczekajlo and Antonio Paolillo. Implementation of Memory Centric
Scheduling for COTS Multi-Core Real-Time Systems. ECRTS, Stuttgart, Germany, July 2019.

Experiments on Cortex-A9 Quad Core 1MB shared L2 cache [5]

Histogram of exec. times of a task {Data = 800000 bytes)

ol o —J i

- - o e Overheads due to memory phases
o are lower than inflation due to
m(p . | interferences

o e e Execution time not as affected by
m number of interfering cores

11 12 13 14
ms

[5] Juan M Rivas, Joél Goossens, Xavier Poczekajlo and Antonio Paolillo. Implementation of Memory Centric
Scheduling for COTS Multi-Core Real-Time Systems. ECRTS, Stuttgart, Germany, July 2019.

Fast user-space locks

Futex-based synchronisation primitives

No system calls if no contention
> greatly reduces the locks overhead

All user locking primitives are built on top of futexes

Application use cases - UAV

Application use cases - automotive

Application use cases - FPGA filters

https://voutu.be/734gxpzKi4A

http://www.youtube.com/watch?v=734qxpzKi4A
https://youtu.be/734qxpzKi4A

Agenda

6. Conclusions and bright future

Summary: the HIPPEROS RTOS

HIPPEROS is a RTOS targeting modern high-end embedded platforms, exhibiting
heterogeneous parallelism (multi-core, FPGA, etc.)

The RTOS is configurable and tailorable to system designers and application developers
requirements (e.g. choose of scheduling policy, memory model, etc.)

Moreover, it provides predictability and reliability to the application layer with strict
real-time scheduling and associated monitoring, space isolation through virtual
memory

It may fits the requirements of an “Adaptive AUTOSAR” RTOS

A side goal is to validate research results and stay in touch with academia

Initially intended fully proprietary...

=&

Company landed in 2019 for lack of funding

New opportunity: open source

Future work

e The kernel & OS, initially proprietary, will be opened

e Dual licensing scheme:
o Free & open-source for academic & non-commercial use

o Licensed for commercial use, with MangoGem company

e Playground for experiments, new idea or algorithms / policies / ...
o Real-time community (alternative to linux)

o Others (e.g. micro-kernel design space exploration, SMP, power-management, ...)

Open questions

e \What license?
o I'mno IP expert
o Open to idea / suggestion / discussion in the room

e \What model for external contributions?
o Will likely be only external

e Agenda
o Code base cleanup
o Define the license & the contribution model
o Create a landing page
o Open the project on Github... and celebrate :-)

Resources

[1]

2]

[3]

[4]

[5]

My Ph.D. thesis, a lot of HIPPEROS trivia are explained, publicly available
https://antonio.paolillo.be/research.html
https://antonio.paolillo.be/publications.html

An introductory paper to HIPPEROS micro-kernel design (~3 pages)
https://people.mpi-sws.org/~bbb/events/ospert15/pdf/ospert15-p25.pdf

A paper about low-power scheduling on HIPPEROS (~12 pages)
http://dx.doi.org/10.1145/2997465.2997473

A paper about using mixed-criticality scheduling in a real RTOS (~6 pages)
https://github.com/CPS-research-group/WMC2017/raw/master/papers/1.pdf

Recent paper on predictable real-time memory scheduling (ECRTS’19),
using HIPPEROS RTOS as a validation platform (~23 pages)
http://drops.dagstuhl.de/opus/volltexte/2019/10744/

https://antonio.paolillo.be/research.html
https://antonio.paolillo.be/publications.html
https://people.mpi-sws.org/~bbb/events/ospert15/pdf/ospert15-p25.pdf
http://dx.doi.org/10.1145/2997465.2997473
https://github.com/CPS-research-group/WMC2017/raw/master/papers/1.pdf
http://drops.dagstuhl.de/opus/volltexte/2019/10744/

T
hanks!

Q7

