
Towards Macro-Aware C-to-Rust Transpilation (WIP)
Robbe De Greef

Vrije Universiteit Brussel
Brussels, Belgium

robbe.de.greef@vub.be

Attilio Discepoli
Vrije Universiteit Brussel

Brussels, Belgium
attilio.discepoli@vub.be

Esteban Aguililla Klein
Université Libre de Bruxelles

Brussels, Belgium
esteban.aguililla.klein@ulb.be

Théo Engels
Royal Military Academy

Brussels, Belgium
theo.engels@mil.be

Ken Hasselmann
Royal Military Academy

Brussels, Belgium
ken.hasselmann@mil.be

Antonio Paolillo
Vrije Universiteit Brussel

Brussels, Belgium
antonio.paolillo@vub.be

Abstract
The automatic translation of legacy C code to Rust presents
significant challenges, particularly in handling preprocessor
macros. C macros introduce metaprogramming constructs
that operate at the text level, outside of C’s syntax tree, mak-
ing their direct translation to Rust non-trivial. Existing tran-
spilers — source-to-source compilers — expand macros be-
fore translation, sacrificing their abstraction and reducing
code maintainability. In this work, we introduce Oxidize,
a macro-aware C-to-Rust transpilation framework that pre-
serves macro semantics by translating C macros into Rust-
compatible constructs while selectively expanding only those
that interfere with Rust’s stricter semantics. We evaluate our
techniques on a small-scale study of real-world macros and
find that the majority can be safely and idiomatically tran-
spiled without full expansion.

CCS Concepts: • Software and its engineering → Incre-
mental compilers; Source code generation; Preproces-
sors.

Keywords: Transpilation, C, Rust, Preprocessor, Macros, Ab-
stract Syntax Tree, Metaprogramming, Embedded
ACM Reference Format:
Robbe De Greef, Attilio Discepoli, Esteban Aguililla Klein, Théo En-
gels, Ken Hasselmann, and Antonio Paolillo. 2025. Towards Macro-
Aware C-to-Rust Transpilation (WIP). In Proceedings of the 26th
ACM SIGPLAN/SIGBED International Conference on Languages, Com-
pilers, and Tools for Embedded Systems (LCTES ’25), June 16–17,
2025, Seoul, Republic of Korea. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3735452.3735535

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
LCTES ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1921-9/25/06
https://doi.org/10.1145/3735452.3735535

1 Introduction
Embedded systems power critical applications ranging from
robotics and autonomous vehicles to industrial control sys-
tems and defense infrastructure. These systems usually have
to meet strict safety and reliability requirements. However,
much of the software running on these systems is written
in memory-unsafe languages such as C and C++, leading
to security vulnerabilities that pose severe risks, including
remote exploits, system crashes, and even physical damage.
Recognizing this, governments and industry leaders are

advocating for a transition to memory-safe programming
languages: the White House ONCD explicitly recommended
moving away from C/C++ [10], Google’s security analysis
found that 70% of critical vulnerabilities in Android and
Chrome stem frommemory safety issues [6], and the DARPA
has issued a call, the TRACTOR program [2], for proposals
aimed at automating the translation of C to Rust.

Rust is seeing increasing adoption across various domains,
including in embedded software [7]. Its strongmemory safety
guarantees, built-in concurrency model, and strict type sys-
tem make it a compelling alternative to C and C++, partic-
ularly for mitigating security vulnerabilities and undefined
behavior in low-level programming.
However, embedded and safety-critical software devel-

opment relies heavily on large C/C++ stacks that include
real-time operating systems, kernel subsystems, system-level
middleware (e.g. CycloneDDS), ROS nodes, and sensor dri-
vers. A full manual rewrite is often impractical due to cost,
time, and maintainability constraints. To facilitate Rust adop-
tion without abandoning these critical software stacks, auto-
mated transpilation offers a practical solution. By translating
C code to Rust in a source-to-source manner, developers can
incrementally migrate code while preserving compatibility
with legacy systems. However, existing transpilation tools
such as C2Rust and Corrode bypass preprocessor constructs,
particularly macros, which are widely used in embedded
software for configuration, code reuse, and low-level opti-
mizations. Fully expanding macros during transpilation elim-
inates their abstraction benefits, increases code complexity,
and reduces maintainability—making automated migration
significantly less practical.

57

https://orcid.org/0009-0000-1477-2616
https://orcid.org/0009-0001-7100-3909
https://orcid.org/0009-0007-0987-1186
https://orcid.org/0009-0009-5405-186X
https://orcid.org/0000-0002-8196-9889
https://orcid.org/0000-0001-6608-6562
https://doi.org/10.1145/3735452.3735535
https://doi.org/10.1145/3735452.3735535

LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea R. De Greef, A. Discepoli, E. Aguililla Klein, T. Engels, K. Hasselmann, A. Paolillo

Table 1. Oxidize features compared with the related work.
✗ = not supported, ✛ = planned, ✓ = supported.

Project Features
C C++ Comments Safe Macros

CRust [9] ✓ ✓ ✓ ✗ ✗
C2Rust [4] ✓ ✗ ✗ ✗ ✗
Corrode [8] ✓ ✗ ✗ ✗ ✗
CRustS [5] ✓ ✗ ✗ ✓ ✗
Oxidize ✓ ✛ ✛ ✛ ✓

Contributions. This paper presents Oxidize, a macro-
aware C-to-Rust transpiler that preserves macro semantics
while ensuring correct and maintainable translation. Our key
contributions include: (1) A novel macro handling strategy
that classifies macros as either expandable or contractable,
allowing selective translation into Rust macros rather than
forcing expansion. (2) A technique for resolving identifier
hygiene issues, ensuring macros do not introduce naming
conflicts. (3) A method for reconstructing types of C macro
arguments and implicit C type promotions in Rust to ensure
type safety while preserving C semantics. (4) A study on
macro usage in an existing codebase, analyzing transpilabil-
ity in real-world scenarios.

2 Related Work
Transpilers. Existing C/C++ to Rust transpilers include
CRust [9], C2Rust [4], and Corrode [8]. The CRustS [5]
project, built on top of C2Rust, adds more passes to reduce
the amount of unsafe blocks. None of these tools preserve
preprocessor constructs such as macros – which are widely
used in embedded software for configuration, code reuse,
and low-level hardware control – hence limiting the practical
value of automated migration. None of these tools aim to
generate idiomatic Rust code. Table 1 summarizes the key
differences between our tool, Oxidize, and related work. In
contrast to prior tools, Oxidize focuses on: (i) preserving
macros where possible, (ii) restructuring them into equiv-
alent Rust idioms, and (iii) producing readable, idiomatic
Rust.

Others. The Zig programming language includes a C com-
piler frontend capable of integrating C code directly into Zig
projects, but it does not preserve C macros during the pro-
cess. Zig’s goal is interoperability, not transpilation [12].
Macroni [11] preserves macro information during C prepro-
cessing by extracting structured representations of macros
for later use, but is not integrated into a transpilation pipeline.

3 Designing a C Transpiler
Building a C-to-Rust transpiler involves multiple stages, be-
ginning with preprocessing and macro handling, followed by
parsing the C code into an Intermediate Representation (IR)

< >
C

< >
Rust

Preprocessing Macro Handling

Semantic
transformation

IR

Rust AST Refinement

Figure 1. Overview of the various passes of the C-to-Rust
Oxidize transpiler, starting with a preprocessing stage as
frontend followed by a macro handling stage.

that faithfully captures program semantics. This IR serves
as the foundation for subsequent semantic transformations,
where C-specific constructs – such as implicit type conver-
sions, pointer arithmetic, and struct layout assumptions –
are adapted to fit Rust’s stricter type system and ownership
model. Once these adjustments are made, the IR is converted
into a Rust Abstract Syntax Tree (AST), which is then refined
further to ensure the resulting code is not merely syntacti-
cally correct but also idiomatic and maintainable, as if it had
been originally written in Rust.
As illustrated in Figure 1, the design of our transpiler

Oxidize follows these stages, starting with the frontend that
preprocesses the file followed by the handling of macros.
At the frontend, we use libclang to parse the C source
into an AST, extracting syntactic elements while gathering
information about macros. We focus in this paper on the
macro handling stage. The descriptions of the next stages of
Oxidize are out of scope and thus left as future work.

4 Transpiling Macros
A particularly challenging stage of the transpiler pipeline
is also one of the first: handling C macros, which introduce
metaprogramming constructs that significantly complicate
transpilation. Unlike standard C constructs, macros exist en-
tirely at the preprocessor level, meaning they operate outside
the compiler’s type system and can define anything from
simple constants to complex functions and code fragments.
A common approach to handling macros is to expand

them fully before transpilation, reducing all macro logic to
standard C syntax [3]. While this preserves functional cor-
rectness, it removes the higher-level abstraction intended
by the original developer, making the translated Rust code
significantly harder to read and maintain. Instead, our ap-
proach seeks to preserve the metaprogramming intent be-
hind macros by restructuring them into Rust-compatible
constructs. Rather than expanding each macro, we analyze
its role in the program and determine whether it should be
retained as a Rust macro, converted into an equivalent Rust
construct, or expanded only where necessary.

4.1 Macros as Text, Not AST
C macros are purely text-based substitutions, meaning they
operate independently of C syntax. Unlike Rust macros,

58

Towards Macro-Aware C-to-Rust Transpilation (WIP) LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea

// Original C code
#define RETVAL 2
#define LPAR (
#define RPAR)
#define ASSIGN =
#define SCOLON ;

int main LPAR RPAR {
int ret ASSIGN RETVAL SCOLON
return ret SCOLON

}

// Code transpiled into Rust
macro_rules! RETVAL {
() => { 2 }

}
unsafe fn c_main() -> i32 {
let mut ret: i32 = RETVAL!();
return ret;

}

Figure 2. Transpiling macros that are not C expressions.

#define STRCPY(x,y) strcpy((x),(y))

int main() {
int (*strcpy)(char*, char*) = otherfunc;
char a[] = "Hello";
char b[] = "abc";
STRCPY(a, b); // Expands to strcpy((a), (b));

}

Figure 3. Example of unhygienic C macro code.

which must form a valid AST, C macros act as token-based
replacements and can generate syntactically incorrect con-
structs when expanded. Consequently, some macros do not
have a direct analogue in Rust.
In Figure 2, the macros are used to reconstruct syntax.

These macros do not represent valid C ASTs (except for
RETVAL); rather, they encode syntactic elements such as paren-
theses, assignments, and semicolons. After expansion, the
result could be invalid C, since the macro system is unaware
of the broader syntactic context. Rust macros require a con-
formingAST representation, making this type of token-based
substitution impossible to transpile directly.
Solution: restricting to valid C expressions. Most

macros, as we observe in Section 5, are used in expression
contexts and form valid C expressions. We use this property
to decide whether a macro can be transpiled or must be ex-
panded. Chained macro invocations are resolved recursively,
with each submacro either expanded or retained based on
this same criterion.

4.2 Hygiene Issues in C Macros
C macros lack hygiene, meaning they do not enforce scoping
rules and can introduce identifier shadowing. Since macros
are not aware of variable scopes, they can introduce name
conflicts. In the example of Figure 3, strcpy has been rede-
fined as a function pointer, thus the expanded macro refers to
the local identifier instead of the standard strcpy function.

Solution: restricting outside identifiers. All identifiers
used inside amacromust either be definedwithin themacro’s
parameters or be defined at the macro’s definition without
being shadowed at the macro call sites. If a macro depends
on an external identifier that is shadowed, it is expanded
with a transpilation warning. Rust maintains proper scoping
rules, so all macros must follow Rust’s hygiene constraints
to prevent accidental shadowing.

// Original C code
#define ADD(x, y) \

((x) + (y))

int main() {
int x = 2;
char y = 3;

int foo = ADD(x, y);
}

// Code transpiled into Rust
macro_rules! ADD {

($x:expr, $y:expr, $ty_0:ty) => {
(($x as $ty_0) + ($y as $ty_0))

};
}

unsafe fn c_main() -> i32 {
let mut x: i32 = 2;
let mut y: i8 = (3 as i8);

let mut foo: i32 = ADD!(x, y, i32);
}

Figure 4. Argument types are explicitly passed to transpiled
macros at their call sites.

4.3 Typing Information and Implicit Conversions
The C preprocessor lacks any typing information. Addition-
nally, and unlike Rust, C implements features such as implicit
type conversions, type promotions and pointer arithmetic,
which must be then explicitly implemented in the transpiled
code. However, Rust enforces strict typing and does not allow
such implicit conversions.
When transpiling typical C code, these implicit conver-

sions can be addressed by analyzing the corresponding types,
identifying instances of conversions in the C code, and mak-
ing them explicit through correct cast operations. However,
within macros, there is no typing information available for
macro input arguments, as those can change with each invo-
cation. Consequently, it is impossible to explicitly perform
casts or handle pointer arithmetic within macros.
Solution: type inference at macro call sites. In Rust,

macros allow various types of arguments to be passed in,
including types. At points where implicit promotion would
typically occur, for example, in function arguments, assign-
ments or arithmetic, we introduce a cast to a generic type
name which is passed into the macro. During macro invoca-
tion, the transpiler determines the appropriate type based
on the macro’s input parameters and passes it as the generic
type name. Although this solution adds type parameters to
macros, which increases complexity, it guarantees type cor-
rectness in Rust. The increased complexity can be simplified
by adding further code cleaning passes.

Figure 4 illustrates this technique. Themacro ADD performs
arithmetic on variables of different types. Due to C’s implicit
type promotion rules, the expression ADD(x, y) results in
an implicit conversion of char y to an int.

4.4 Handling Chained Macros
Many C macros are not standalone entities but instead

invoke other macros in a nested fashion. Handling such cases
requires to integrate our prior techniques while maintain-
ing a structured representation of macro dependencies. We
construct a graph where each node represents a macro and
directed edges indicate which macros invoke other macros.
After the graph is constructed, we perform a depth-first tra-
versal and evaluate whether the lowest-level macro in the

59

LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea R. De Greef, A. Discepoli, E. Aguililla Klein, T. Engels, K. Hasselmann, A. Paolillo

#define THREE 3
#define PLUS +
#define BAZ THREE
#define FOO(a) a PLUS BAZ

int main() {
return FOO(2);

}

macro_rules! THREE {() => { 3 }}
macro_rules! BAZ {() => { THREE!() }}
macro_rules! FOO {

($a: expr, $ty_0: ty) => {
(($a as $ty_0) + (BAZ!() as $ty_0))

}
}
unsafe fn c_main() -> i32 {

return FOO!(2, i32);
}

Figure 5. Example of macros calling macros in C, transpiled
to Rust with Oxidize.

FOO
a + BAZ

+ THREE

3

PLUS BAZ

THREE

INVOKE

INVOKE

INVOKE

EXPAND

Figure 6. The AST corresponding to the code at Figure 5
with the expand or invoke selection of Oxidize.

tree is suitable for transpilation, using our previously de-
scribed techniques. If it is valid, the macro is invoked rather
than expanded wherever it is referenced, including in other
macro definitions. By processing the graph in this bottom-
up approach, we ensure that any macro that is called in an-
other macro’s body has been processed previously, defining
whether it should be expanded or invoked.

Figure 5 presents an example of chained macros in C and
how they are transpiled: FOO calls PLUS and BAZ, with BAZ
further referencing THREE. THREE is processed first, followed
by BAZ, and then PLUS. Since PLUS does not form a valid
C expression, it needs to be expanded in the body of FOO.
Consequently, once PLUS is expanded, FOO becomes a valid
C expression and can be invoked directly in the source code
rather than expanded. Figure 6 demonstrates the graph cre-
ated by Oxidize for transpiling FOO.

5 Small-Scale Study
To assess the effectiveness of our macro transpilation ap-
proach, we conducted an initial evaluation on the open-
source project figlet, a text-based banner generation tool
written in C [1]. This preliminary study aimed to analyze
the types of macros present in a real-world codebase and
determine how many could be successfully translated into
idiomatic Rust using the Oxidize macro-aware transpiler.
The figlet codebase comprises 8 C source files and con-

tains a total of 82 macros. These include 68 object macros
and 14 function macros. Each file was processed through our
transpiler to identify which macros could be translated. The
resulting macro definitions were then compared with the
original macro definitions in the C source.

Table 2. C macros are either transpiled or expanded by
Oxidize. The table presents the number of transpiled macros
over the overall number of macros, per file in figlet.

Filename #T/#M Filename #T/#M
figlet.c 31 / 31 zipio.c 8 / 20
crc.c 0 / 1 utf8.c 9 / 11
inflate.c 10 / 19 chkfont.c 4 / 4
getopt.c 3 / 4

The relevant data is presented in Table 2. Notably, the type
of macro usage in these files vary considerably. For instance,
the zipio.c file makes extensive use of macros for defin-
ing and expanding statements. Since our current solution is
limited to handling expressions, many of these macros are
ineligible for direct transpilation and will require expansion.

However, a substantial majority of macros are expression-
like macros and are able to be transpiled. This is promising,
as it implies a significant portion of macros can be mapped
to Rust constructs without requiring complex rewrites. Addi-
tionally, we are confident that our approach can be adapted
to also support C statements in the future.

6 Conclusions and Future Work
We presented a method for transpiling C macros and func-
tions into Rust, addressing an issue that has been persistently
overlooked by other existing transpilation tools, including
C2Rust, CRust, and Corrode.

We currently test Oxidize using a custom suite that com-
pares the output of the original C code with its transpiled
Rust version to check for equivalence. The next phase of the
project involves fuzzing the transpiler and extending testing
with additional C projects, including DOOM. Furthermore,
we aim to focus on low-level libraries, embedded software
and potentially certain components of the Linux kernel, such
as drivers. As Oxidize currently only works with object and
function macros, we need to develop it further so that it also
handles other types of preprocessor statements (#include,
#undef, #ifdef, variadic macros, etc). These could all be
expanded, but that would heavily complexify the resulting
code. We will prioritize macro transpilation mechanisms
according to the use cases we will encounter.

With C++ adding the concept of template-based metapro-
gramming, more challenges will need to be addressed to
transpile more legacy and unsafe code into Rust. The devel-
opment of Oxidize as a transpilation tool will continue, so
that we can transpile entire C and C++ codebases into Rust.
We will also dedicate future work to the development of Rust-
specific passes that reduce the usage of unsafe constructs. We
envision the transpiler operating as an incremental, function-
by-function tool, exploiting Rust’s FFI mechanism to gradu-
ally integrate Rust functions into the C codebase to test the
correctness of the transpiled functions.

60

Towards Macro-Aware C-to-Rust Transpilation (WIP) LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea

Acknowledgments
This work is supported by the Belgian Ministry of Defence
under the Defence-related Research Action (DEFRA), con-
tract number 24DEFRA001, within the FORCES project.

References
[1] Glenn Chappell, Ian Chai, and Contributors. 1991. FIGlet: A pro-

gram for making large letters out of ordinary text. Online. http:
//www.figlet.org/ Accessed: 2025-05-12. Maintained on GitHub at
https://github.com/cmatsuoka/figlet.

[2] DEPT OF DEFENSE. 2024. Translating All C TO Rust (TRACTOR). On-
line. https://sam.gov/opp/1e45d648886b4e9ca91890285af77eb7/view
Accessed: 2025-05-12.

[3] Immunant. 2018. Handling C Macros in C2Rust. https://github.com/
immunant/c2rust/issues/16 Accessed: 2025-05-12.

[4] Immunant. 2025. immunant/c2rust. GitHub repository. https:
//github.com/immunant/c2rust Originally published 2018-04-20. Ac-
cessed: 2025-05-12.

[5] Michael Ling, Yijun Yu, Haitao Wu, Yuan Wang, James R. Cordy, and
Ahmed E. Hassan. 2022. In rust we trust: a transpiler from unsafe C
to safer rust. In Proceedings of the ACM/IEEE 44th International Con-
ference on Software Engineering: Companion Proceedings (Pittsburgh,
Pennsylvania) (ICSE ’22). Association for Computing Machinery, New
York, NY, USA, 354–355. https://doi.org/10.1145/3510454.3528640

[6] Alex Rebert and Christoph Kern. 2024. Secure by Design: Google’s
Perspective on Memory Safety. Technical Report. Google Security Engi-
neering.

[7] Ayushi Sharma, Shashank Sharma, Sai Ritvik Tanksalkar, Santiago
Torres-Arias, and Aravind Machiry. 2024. Rust for Embedded Systems:
Current State and Open Problems. In Proceedings of the 2024 on ACM
SIGSAC Conference on Computer and Communications Security (Salt
Lake City, UT, USA) (CCS ’24). Association for Computing Machin-
ery, New York, NY, USA, 2296–2310. https://doi.org/10.1145/3658644.
3690275

[8] Jamey Sharp. 2025. Corrode: Automatic semantics-preserving transla-
tion from C to Rust. Online. https://github.com/jameysharp/corrode
Accessed: 2025-05-12.

[9] Nishanth Shetty, Nikhil Saldanha, and M. N. Thippeswamy. 2019.
CRUST: A C/C++ to Rust Transpiler Using a “Nano-parser Method-
ology” to Avoid C/C++ Safety Issues in Legacy Code. In Emerging
Research in Computing, Information, Communication and Applica-
tions, N. R. Shetty, L. M. Patnaik, H. C. Nagaraj, Prasad Naik Ham-
savath, and N. Nalini (Eds.). Springer, Singapore, 241–250. https:
//doi.org/10.1007/978-981-13-5953-8_21

[10] Stack Overflow. 2024. In Rust We Trust: White House Office Urges
Memory Safety. Online. https://stackoverflow.blog/2024/12/30/in-
rust-we-trust-white-house-office-urges-memory-safety/ Accessed:
2025-05-12.

[11] Trail of Bits. 2023. Holy Macroni! A Recipe for Progressive Language
Enhancement. https://blog.trailofbits.com/2023/09/11/holy-macroni-
a-recipe-for-progressive-language-enhancement/ Accessed: 2025-05-
12.

[12] Zig Software Foundation. 2024. Working with C - Zig Guide: translate-
c. https://zig.guide/working-with-c/translate-c/. Accessed: 2025-05-
12.

61

http://www.figlet.org/
http://www.figlet.org/
https://github.com/cmatsuoka/figlet
https://sam.gov/opp/1e45d648886b4e9ca91890285af77eb7/view
https://github.com/immunant/c2rust/issues/16
https://github.com/immunant/c2rust/issues/16
https://github.com/immunant/c2rust
https://github.com/immunant/c2rust
https://doi.org/10.1145/3510454.3528640
https://doi.org/10.1145/3658644.3690275
https://doi.org/10.1145/3658644.3690275
https://github.com/jameysharp/corrode
https://doi.org/10.1007/978-981-13-5953-8_21
https://doi.org/10.1007/978-981-13-5953-8_21
https://stackoverflow.blog/2024/12/30/in-rust-we-trust-white-house-office-urges-memory-safety/
https://stackoverflow.blog/2024/12/30/in-rust-we-trust-white-house-office-urges-memory-safety/
https://blog.trailofbits.com/2023/09/11/holy-macroni-a-recipe-for-progressive-language-enhancement/
https://blog.trailofbits.com/2023/09/11/holy-macroni-a-recipe-for-progressive-language-enhancement/
https://zig.guide/working-with-c/translate-c/

	Abstract
	1 Introduction
	2 Related Work
	3 Designing a C Transpiler
	4 Transpiling Macros
	4.1 Macros as Text, Not AST
	4.2 Hygiene Issues in C Macros
	4.3 Typing Information and Implicit Conversions
	4.4 Handling Chained Macros

	5 Small-Scale Study
	6 Conclusions and Future Work
	Acknowledgments
	References

