Towards Macro-Aware
C-to-Rust Transpilation
(WIP)

Robbe DE GREEF?, Attilio DISCEPOLI!, Esteban AGUILILLA KLEIN?2, Théo ENGELS?, Dr. Ir. Ken HASSELMANNS?, Prof. Antonio PAOLILLO!

Vrije Universiteit Brussel, 2Université Libre De Bruxelles, >Royal Military Academy of Belgium

BRUSSEL

Royal Military Acaderﬁy

VR'JE UNIVERSITE
UNIVERSITEIT 1A

Context

FORCES project

Incremental C/C++ to Rust transpilation project

Preserving readability
it

Ensuring maintainabil

FORCES: An Incremental Transpiler from C/C++ to Rust for Robust
and Secure Robotics Systems

Théo Engels', Ailio Discepoli?, Robbe De Greef?. Esteban Aguililla Klein®, Francesco D Agostino.
Remi Gunsett”, Jonathan Pisane*, Ken Hasselmann' and Antonio Paolillo?

Absract—Unsae memory accoses are the case of most
Incrabi

robotic use cases for the Belgian Defe
1. INTRODUCTION

In carly 2024, the White House Office of the National Cy-
ber Director issued a report highlighting the risks associated
il langusges allowin divect memory maipulion such
25 and G, and uging peogeammers 1 adopt me
s Imgars. o sl e o, while sl poRiTnG
memory-safe practices o legacy codcbases in an cffort to
prevent vulnerabilities that have Jed to breaches like the 2014
Heartbleed bug and the 2023 BLASTPASS incident [1]. The
E ‘Union, through the Cyber Resilience Act [2] and
the NIS2 Directive [3]. also recognizes the importance of
Imprvin cybencery n e merner s, ighghing
the need o in software develop-
ment and mu\lmg nkaiives puihiag fof the adopion of
tices [4]. In March 2024,
cd that ncay 70% of the highesicaly
Vulnerabilties in Android and Chrome stem from memory
safety issues. Microsoft [6] has also shown that around 70%
of their CVEs are duc to memory corruption in C/C++ code.
Both companies argue that adopting memory-safe languages.
ke Rust can proaciively eliminate these vulnerabilities with

mory sccurity vulnerabilities in
€ o [1). Collecinl, thes ikiatves U ot
memory safety is not only 4 best practice but a matter of
ey and eibilly fo cuical sysems, whose Falres can
‘generally lead to catastrophic consequences.

“Royal Miliry Acalemy of Belgium, Brusel. Belgiom

B T

Hntersité Bl B B

“Thale Belgom, Tbize. Belg

obotic systems—such as unmanned gerial, ground and
maritime vehicles—are increasingly deployed in high-stakes
environments, from surveillance and reconnaissance 1 dem-
ining and payl y. The unique complexity and
autonomy of these systems. combined with their exposure
10 cyber threats, amplify the potential impact of security

mised robotic systems underscore the urgency of adopting

Contributions. We introduce FORCES, a toolchain and
meshodogy 12 sppon he ncremenal igruion oflogacy
g bases to memory-safe Rust, with a focus on
botics ppiions FORLES i b 5 it
of legacy cobebases into safe Rust by proposing @
o . el 4 o
work for evaluating the transpiled programs through 4 high-
level metrics: correciness, performance, security and code
quality. The transpiler will perform an incremental. function-
each function translation will be
these 4 metics to ensure that the
code is comectly translated before being integrated into the
resulting codebase.

IL RELATED WORK
A Legacy Languages and Rust as Safer Altemative

1 modules [21].
[15]. 122] underscore its suitability for defense robotics.
B. Automated Transpilation Efforts

Recent initiatives 10 automate the migration from C and
Cé+ 10 Rust showed the feasibility and benefits of transi-
bases. However, existing solutions fall
hoton cenan ponts. For instance. Tpuramati t s (23
showed that C2Rust [24]—a project funded by DARPA—
can only handle C code. converting it to unsafc Rust, and
that CRust [25] has limited class transpilation support and
cannot handle header files. In the same work, the authors also

https://antonio.paolillo.be/publications/workshops/icra25_r4r_forces_paper.pdf

No solution exists

C2Rust [1] Corrode [2] CRust [3]
Convert C to Rust v v v/
Convert C++ to Rust X X v
Generate safe Rust code X X X
Preserve comments X X v
[Preserve macros X X X
Generate Rust-like code X X X
Actively maintained v X X

[1] https://c2rust.com [2] https://qithub.com/jameysharp/corrode [3] https://github.com/NishanthSpShetty/crust

https://c2rust.com/manual/docs/known-limitations.html
https://github.com/jameysharp/corrode
https://github.com/NishanthSpShetty/crust

Problem definition

C Preprocessor

e Expansion occurs before compilation

e Preprocessor constructs are not part of C

()l — Preprocessing — Compilation — Linking — 3 |

C source code Executable

Preprocessor must be invoked to produce valid C code

Why not just expanding them?

void skipws (ZFILE *fp)
{

int c;
while (c = ((-—-((fp)->1len) >= 0) 2
void skipws (ZFILE *fp) { (unsigned char) (* (fp) —>ptr++)
int c; _Zgetc(fp)),
while (c=Zgetc (fp),isascii(c)&&isspace(c)): -)
Zungetc (c, fp) ; ~0x7f) == 0) &&
} ((*__ctype b _loc()) [(int) ((
c))] &

(unsigned short int) ISspace));

((fp) —>ptr--, (fp)->lent++, (c));

Macro contracting

e Turning expanded macros back into invocations

e Not always possible

#define LB { macro rules! DOUBLE ({
#define RB } ($Sx: expr) => {
#define PARENS () Sx * 2
#define SEMI ; i
#define DOUBLE (x) (x * 2) } ?
°

int main PARENS LB fn ¢ main() -> 132 {

return DOUBLE (2) SEMI return DOUBLE! (2) ;

RB }

Keep expression like macros

e Capture the majority of macro definitions
o ~70% of FIGlet macros

e Generally have an analogue in Rust

e Reduced scope

[No notion of C syntax }

Retain only expressions

C macros are text

A

[Unhygienic }

No typing info

10

Unhygienic C macros

char* strcpy(char*, char*);

int main () {
int (*strcpy) (char*,char*) = otherfunc;
char af] = "Hello";
char [1 = "abc";

strcpy ((a), (b)):;

Solution

Check for shadowing of identifiers
defined at macro definition

No notion of C syntax

C macros are text

A

Unhygienic

{ No typing info J

12

Intermezzo: implicit type conversions

int main () { int main () {
int a = 2; . int a = 2;
short b = a; ImpI|C|TIy short b = [(SRhOXtT) a;
return b; return b;
} }
int main () { int main () {
int a = 2; L int a = 2;
short b = 3 ImpI|C|TIy short b = 3
return a + b; return a + (int) b;

C11 (ISO/IEC 9899) — Section 6.3 Conversions

Intermezzo: implicit type conversions

Easily solved in regular code

int main () {
int a = 2;

short b = 3;

return a + b;

Rust

fn ¢ main() -> 132 { matched typeS
let a: i32 = 2;
let b: il6 = 3;

return a + b as 132;

14

Arithmetic conversions
Mismatched types

macro_ rules! ADD

(Sx:expr, rexpr) => {
Sx + Sy
#define ADD(x, y) ((x) + (y)) e
int main () { }
int a = 2; fn ¢ main() -> 132 {
short b = 3; let a: 132 = 2;
return ADD(a, b); let b: il6 = 3;

} return ADD! (a, b);

Macro typing issues

e Arithmetic conversions ~

e Pointer arithmetic - Helper traits*

e Array to pointer decay ~

e Assignment conversions

e Integer promotions e Passing in type parameters

* Different from paper where type parameters were used for arithmetic operations

16

Generate helper traits

pub trait CAdd<R> ({
type Output;
unsafe fn ¢ add(&mut self, rhs: &mut R) -> Self::Output;

impl CAdd::<il6> for i32 {

type Output = i32;

unsafe fn ¢ _add(&mut self, rhs: &mut i32) -> i32 {

((*self) as 132) + ((*xrhs) as 132)

1 For all addable types

macro_ rules!
($x:expr,
(Sx) .

Yz
}

fn ¢ main ()

ADD {
Sy:expr)
c_add(Sy)

-> 132 {

let a: 132 = 2;
let b: il6 = 3;

return ADD! (a, b);

=>

{

17

Assignment conversions
Mismatched types

macro_rules! ASSIG

(Sx:expr, ‘expr) => {
#define ASSIGN(x, y) (x) = (y) Sx = Sy
}i
void main () { }
int a = 2; R
short b = 3; fn c main() {
ASSIGN (a, b); let mut a: i32 = 2;
} let b: il6 = 3;

ASSIGN! (a, b);

Pass in types

#fdefine ASSIGN (x, V) (x) = (V)
void main () {
int a = 2;

short b = 3;
ASSIGN (a, b);

macro rules! ASSIGN ({
(Sx:expr, Sy:expr, Sty 0: ty)
$x = Sy as Sty 0
}i

fn ¢ main() {
let mut a: i32 = 2;
let b: il6 = 3;
ASSIGN! (a, b, 132);

=>

19

Tying everything together

Transpiling FIGlet

e ASCII text generator
e All but one file transpiled

e 64/85 macros retained

N O

L1 INN /1
L1 I1> <11 (I

__ /7 /N NI\, |

21

Example from earlier

void skipws (ZFILE *fp) {

int c;

while (c=Zgetc(fp),isascii(c)&&isspace(c));

Zungetc (c, fp) ;
}

22

Example from earlier

pub unsafe extern "C" fn skipws (mut fp: *mut ZFILE) -> () {
let mut ¢: 132 = (0 as 132);
while ({
c = (zgetc! (fp, *mut ZFILE, i32, 132, *mut ZFILE, *mut u8, *mut ZFILE, i32, 132, u32) as 1i32);
(((isascii! (¢, 132, i32, i32, i32, i32) != 0)
&& (isspace! (¢, *mut *const ul6, *const ul6, u32, u32) != 0)) as 132)
}oi=0) {}
Zungetc! (¢, fp, *mut ZFILE, *mut ZFILE) ;

Future cleanup

pub unsafe ext
let mut ¢:
while ({c =

Zungetc! (c,

ern "C" fn skipws (mut fp:

i32 = (0 as 132);
(Zgete! (fp) as 1i32);
Ip);

(isascii! (c)

*mut ZFILE) -> () {

!= 0 && disspace! (c)

= ©)

as 132}

= 0)

{}

24

There is more...

Grab all macro Parse definitions, Create macro Parse C to IR
. . . Traverse
definitions and — find referencesto — dependency debth first and contract
expansions other macros graph (MDP) P expansions
| Store all
Provided by libclang CTTETI T \ “outside” Unknown
) Remove : references references results in
1
k
! unreferenced | Gl
| macros :)
1 . o . I
Typing :\ definitions | Go through
passes.. T expansions
a + BAZ
FOO | INVOKE Check for Expand
——— overshadowed marked
#define THREE 3 references macros
#define PLUS + PLUS BAZ
#define BAZ THREE T+ | ‘ " THREE
#define FOO(a) a PLUS BAZ EXPAND INVOKE
‘ THREE
int main() { d
return FOO(2) ; 3
} ' INVOKE

25

Demo

26

27

Backup slides

C2Rust skipws example

pub unsafe extern "C" fn skipws (mut fp: *mut ZFILE) {
let mut c: std::ffi::c_int = 0;

loop {
(*fp) .len -= 1;
c = (if (*fp).len >= 0 as std::ffi::c_int {
let fresh6 = (*fp) .ptr;
(*fp) .ptr = ((*fp) .ptr) .offset (1) ;
*fresh6 as std::ffi::c_int
} else {
_zZgetc (fp)
1)
if !'(c & ! (0x7f as std::ffi::c int) == 0 as std::ffi::c_int
&& *(* ctype b loc()).offset(c as isize) as std::ffi::c_int
& ISspace as std::ffi::c int as std::ffi::c ushort as std::ffi::c _int
1= 0)
{
break;
}
}
(*fp) .ptr = ((*fp) .ptr) .offset (-1);
(*fp) .ptr;
(*fp) .len += 1;
(*fp) . len;

29

Why no assign trait?

trait Foo<T> ({
fn assign (&mut self,

}

other: T) -> ();

impl<A, B> Foo for A {

fn assign (&mut self,

other: B) -> () {

*self = other as A;

fn main () {

let mut x: 132 = 34;

let y: 116 = 2;
X.assign (y) ;

println! ("{x}");

‘\\\\\\\\\\\\\‘\~\‘

Non primitive cast

30

Why figlet?

e Small C program
e Knew it well

e Output easily verifiable

31

Macro study results

Filename Transpiled
utf8.c 0

chkfont.c 4

figlet.c 31

inflate.c 10

zipio.c 11

getopt.c 3

crc.c 0

* Numbers differ from paper due to transpiler upgrades

Total

31
19

20

32

Macro study DOOM

405/493 macros transpiled (~88%)

33

Example (no casting)

#define Zungetc(c,f) ((f)->ptr-——, (f)->len++, (c))
macro rules! Zungetc {($c: expr ,$f: expr) => {{
{Sf.c deref().ptr.c post dec(); $f.c deref().len. c post inc()}; Sc}

b}

C Rust

Zungetc (dummy, fp) ; Zungetc! (dummy , £p):

34

One more problem

e Certain casts are not allowed in Rust

e Non-primitive conversions

fn ¢ main() {
let mut x: [132; 3] = [1, 2, 31]1;
let y = xpas ptr() as *mut il6;

Non primitive cast

35

Broken assign example

macro rules! ASSIGN {
($x:expr, Sy:expr, Sty 0: ty)
$x = Sy as Sty O

fn ¢ main() {
let mut a: *mut i16;
let b: [i32; 3] = [1, 2, 3]1:
ASSIGN! (a, b, *mut 116);

=>

{

Non primitive cast

36

Special cast macro

e Use specialized helper macro to cast

e Multiple cast “modes”

macro rules! rust cast {
(Slhs: expr, Srhs: ty, regular) => ({
$1lhs as S$rhs
i
(Slhs: expr, Srhs: ty, array to pointer)
$lhs.as ptr() as Srhs

/] ...

=>

{

37

Fixed assign example

macro rules! ASSIGN ({

(Sx:expr,

Sy:expr, Sty 0: ty, Scast ty: ident)

$x = rust cast! (Sy, Sty 0, Scast ty)

)8

fn ¢ main() {

let mut a:

*mut 116;

let b: [132;

ASSIGN! (a,

b,

3] = [1/ 2/ 317

*mut 116, @array to pointer) ;

=>

{

38

C Preprocessor

e Uses preprocessor constructs
to extend C
e Macros are one of these

constructs

int main () {

return -;

39

Current structure of the transpiler

Frontend
| |
| (c
& [IEseier) | Transformations
C source . . .

code e Dead code analysis e Implicit typing pass
e Macro contracting translator * Pointfer arithmetic pass
e Macro shadowing solver e Decaying array pass
e Macro recursion solver e Default initialize top levels
e Macro typing solver e Typedef haming problem
o e Translate post/pre inc/dec

[J
Middleware Backend

I 1 17 1</>

IR Rust Rust AST Rust AST Rust
Transformations transformations generator trasformations So:jfce

code40

Backup demo video

41

https://docs.google.com/file/d/1NitXWRT5XowMBAwIkA26PNR2ultaG46f/preview

