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Abstract—In this work, we investigate the potential benefit
of parallelization for both meeting real-time constraints and
minimizing power consumption. We consider malleable Gang
scheduling of implicit-deadline sporadic tasks upon multipro-
cessors. By extending schedulability criteria for malleable jobs
to DPM/DVFS-enabled multiprocessor platforms, we are able to
derive an offline polynomial-time optimal processor/frequency-
selection algorithm. Simulations of our algorithm on randomly
generated task systems executing on platforms having up to 16
processing cores show that the theoretical power consumption is
reduced by a factor of 36 compared to the optimal non-parallel
approach.

I. INTRODUCTION

Power-aware computing is at the forefront of embedded
systems research due to market demands for increased battery
life in portable devices and decreasing the carbon footprint
of embedded systems in general. The drive to reduce system
power consumption has led embedded system designers to
increasingly utilize multicore processing architectures. An oft-
repeated benefit of multicore platforms over computationally-
equivalent single-core platforms is increased power efficiency
and thermal dissipation [1]. For these power benefits to be
fully realized, a computer system must possess the ability
to parallelize its computational workload across the multiple
processing cores. However, parallel computation often comes
at a cost of increasing the total computation that the system
must perform due to communication and synchronization
overhead of the cooperating parallel processes. In this paper,
we explore the trade-off between parallelization of real-time
applications and savings in the power consumption.

Obtaining power efficiency for real-time systems is a
non-trivial problem due to the fact that processor power-
management features (e.g., clock throttling/gating, dynamic
voltage/frequency scaling, etc.) often increase the execution
time of jobs and/or introduce switching time overheads in
order to reduce system power consumption; the increased
execution time for jobs naturally puts additional temporal
constraints on a real-time system. Job-level parallelism can
potentially help reduce these constraints by distributing the
computation to reduce the elapsed execution time of a parallel
job. However, the trade-offs between parallelism, increased
communication/synchronization overhead, and power reduc-
tion form a complicated and non-linear relationship. Thus, for
power-aware multicore real-time systems, an important and
challenging open question is: what is the optimal combination
of job-level parallelism and processor power-management

settings to minimize system power consumption while simul-
taneously ensuring real-time deadlines are met?

In this paper, we address the above problem for implicit-
deadline parallel sporadic tasks executing upon a multicore
platform with unique global voltage/frequency scaling ca-
pabilities. That is, all the cores on the multicore chip are
constrained to execute at the same rate. For example, the Intel
Xeon E3-1200 processor has such a constraint on the voltage
and frequency [2]; dynamic voltage and frequency scaling
(DVFS) is only possible in a package-granularity (i.e., we
have to choose one working frequency for all active cores of
the processing platform). However, we also permit dynamic
power management (DPM): this means that some cores of
the platform can be switched-off. In summary, we allow the
selection of a subset of the cores to be active and all these
chosen cores must run at the same frequency.

In the past, researchers have considered the problem of
determining the optimal global frequency for such systems
for non-parallel real-time tasks (see Devadas and Aydin [3]).
Parallelism contributes an additional dimension to this problem
in that the system designer must also choose what is the
optimal number of concurrent processors that a task should
use to reduce power and meet its deadline. Our research
addresses this challenge by proposing an (offline) polynomial-
time algorithm for determining the optimal frequency and
number of active cores for a set of parallel tasks executing
upon a processing platform with homogeneous frequencies.
We use a previously-proposed online scheduling algorithm
by Collette et al. [4] to schedule the parallel jobs once the
frequency and active core allocation has been determined.

The contributions can be summarized as follows:
• We generalize the parallel task schedulability test of

Collette et al. [4] for a processing platform that may
choose offline its operating frequency.

• We propose an exact offline polynomial-time algorithm
for determining the optimal operating frequency and
number of active cores. Given n tasks and m cores, our
algorithm requires O(mn2 log22 m) time.

• We illustrate the power savings of a parallel scheduling
approach by comparing it against the optimal non-parallel
homogeneous scheduling algorithm (via simulations of
randomly-generated task systems).

The main objective of this research is to provide a theo-
retical evaluation of the potential reduction in system power
consumption that could be obtained by exploiting parallelism



of real-time applications. As we will see in the next sections,
significant reductions in system power are possible even when
the degree of parallelism is limited. Our current on-going work
in evaluating parallel implementations of real-time applica-
tions upon an actual hardware testbed is primarily motivated
by the power savings observed in the simulations of this paper.

II. RELATED WORK

There are two main models of parallel tasks (i.e., tasks that
may use several processors simultaneously): the Gang [4], [5],
[6], [7] and the Thread model [8], [9], [10], [11]. With the
Gang model, all parallel instances of a same task start and
stop using the processors in unison (i.e., at the exact same
time). On the other hand, with the Thread model, there is no
such constraint. Hence, once a thread has been released, it can
be executed on the processing platform independently of the
execution of the other threads.

Most real-time research about energy saving has assumed
sequential model of computation. For example, Baruah and
Anderson [12] explicitly state that “ [...] in the job model typi-
cally used in real-time scheduling, individual jobs are executed
sequentially. Hence, there is a certain minimum speed that the
processors must have if individual jobs are to complete by their
deadlines [...]”. In this research, by reducing the minimum
required speed of the platform below the sequential limit, we
push the potential power/energy savings further by removing
this constraint and allowing each job to be executed in unison
on several processing cores.

Few research has addressed both real-time parallelization
and power-consumption issues. Kong et al. [13] explored the
trade-offs between power and degree of parallelism for non-
real-time jobs. Recent work by Cho et al. [14] have developed
processor/speed assignment algorithms for real-time parallel
tasks when the processing platform allows each processor to
execute at different speed. In contrast, this work considers
some restrictions on parallel processing (e.g., limited proces-
sor speedup) and power management (e.g., a single global
operating frequency) that exist in many of today’s multicore
architectures, but are not considered in these previous papers.

III. MODELS

A. Parallel Job Model

In real-time systems, a job J� is characterized by its arrival
time A�, execution requirement E�, and relative deadline
D�. The interpretation of these parameters is that for each
job J�, the system must schedule E� units of execution on
the processing platform in the time interval [A�, A� + D�).
Traditionally, most real-time systems research has assumed
that the execution of J� must occur sequentially (i.e., J� may
not execute concurrently with itself on two — or more —
different processors). However, in this paper, we deal with
jobs which may be executed on different processors at the
very same instant, in which case we say that job parallelism
is allowed. It means that for each time units in the interval
[A�, A�+D�), several units of execution of J� can be executed
(corresponding to the number of processors assigned to J�).
Various kind of parallel task models exist; Goossens et al. [6]
adapted parallel terminology [15] to real-time jobs as follows.

Definition 1 (Rigid, Moldable and Malleable Job). A job is
said to be (i) rigid if the number of processors assigned to
this job is specified externally to the scheduler a priori, and
does not change throughout its execution; (ii) moldable if the
number of processors assigned to this job is determined by the
scheduler, and does not change throughout its execution; (iii)
malleable if the number of processors assigned to this job can
be changed by the scheduler during the job’s execution.

As a starting point for investigating the trade-off between
the power consumption and parallelism in real-time systems,
we will work with the malleable job model in this paper.

B. Parallel Task Model

In real-time systems, jobs are generated by tasks. One
general and popular real-time task model is the sporadic task
model [16] where each sporadic task τi is characterized by
its worst-case execution requirement ei, task relative deadline
di, and minimum inter-arrival time pi (also called the task’s
period). A task τi generates an infinite sequence of jobs
J1, J2, . . . such that: 1) J1 may arrive at any time after
system start time; 2) successive jobs of the same task must be
separated by at least pi time units (i.e., A�+1 � A� + pi); 3)
each job has an execution requirement no larger than the task’s
worst-case execution requirement (i.e., E� � ei); and 4) each
job’s relative deadline is equal to the the task relative deadline
(i.e., D� = di). A useful metric of a task’s computational
requirement upon the system is utilization denoted by ui and
computed by ei/pi. In this paper, as we deal with parallel
tasks that could be executed in unison on several processors
with variable speed (DVFS/DPM enabled), tasks having a
utilization value greater than 1 could still be schedulable
(i.e., ui > 1 is permitted). Indeed, to meet its deadline a
job of a task having a utilization greater than 1 must either
1) be executed in unison on several processing cores of the
platform or 2) be executed at an appropriate processor speed
(higher frequency). This frequency/number of cores selection
trade-off is specifically the problem we explore in this paper.
Other useful specific values are umax

def
= maxni=1{ui} and

usum
def
=

�n
i=1 ui.

A collection of sporadic tasks τ
def
= {τ1, τ2, . . . , τn} is

called a sporadic task system. In this paper, we assume a
common subclass of sporadic task systems called implicit-
deadline sporadic task systems where each τi ∈ τ must
have its relative deadline equal to its period (i.e., di = pi).
Finally, the scheduler we use restricts periods and execution
requirements to positive integer values, i.e., ei, pi ∈ N>0.

At the task level, the literature distinguishes between at least
two kinds of parallelism: Multithread and Gang. In Gang
parallelism, each task corresponds to e × k rectangle where
e is the execution time requirement and k the number of
required processors with the restriction that the k processors
execute task in unison [7]. In this paper, we assume malleable
Gang task scheduling (that is, tasks generating malleable jobs);
Feitelson et al. [17] describe how a malleable job may be
implemented.

Due to the overhead of communication and synchroniza-
tion required in parallel processing, there are fundamental
limitations on the speedup obtainable by any real-time job.



Assuming that a job J� generated by task τi is assigned
to k� processors for parallel execution over some t-length
interval, the speedup factor obtainable is denoted by γi,k�

.
The interpretation of this parameter is that over this t-length
interval J� will complete γi,k�

× t units of execution. We let
Γi

def
= (γi,0, γi,1, . . . , γi,m, γi,m+1) denote the multiprocessor

speedup vector for jobs of task τi (assuming m identical
processing cores). The values γi,0

def
= 0 and γi,m+1

def
= ∞ are

sentinel values used to simplify the algorithm of Section V.
Throughout the rest of the paper, we will characterize a parallel
sporadic task τi by (ei, pi,Γi).

We apply the following two restrictions on the multiproces-
sor speedup vector:

• Sub-linear speedup ratio [13]:

1 <
γi,j�

γi,j
<

j�

j

where 0 < j < j� � m.

• Work-limited parallelism [4]:
γi,(j�+1) − γi,j� � γi,(j+1) − γi,j

where 0 � j < j� < m .

The sub-linear speedup ratio restriction represents the fact that
no task can truly achieve an ideal or better than ideal speedup
due to the overhead in parallelization. It also requires that the
speedup factor strictly increases with the number of proces-
sors. The work-limited parallelism restriction ensures that the
overhead only increases as more processors are used by the
job. These restrictions place realistic bounds on the types of
speedups observable by parallel applications. Notice that these
constraints imply that ∀1 � i � n, 0 � j < m : γi,j < γi,j+1.
It could be argued that this constraint is not entirely realistic:
at a reasonable high number of processing cores, allocating
an additional core to the task will not increase the speedup
anymore. However, while our mathematical model requires
that the speedup must increase with each additional processing
core, the situation where adding a core does not benefit the
application speedup can be modeled with γi,j+1 + � = γi,j
where � can be some arbitrarily small positive real number.
Thus, this strict inequality constraint does not place any true
restriction upon approximating such realistic parallel behavior.

There are no other restriction on the actual values of these
speedup parameters, i.e., ∀1 � i � n, 1 � j � m :
γi,j ∈ R>0. An example of two speedup vectors, used in our
simulations, is given by Figure 2 (page 8).

C. Power/Processor Model

The parallel sporadic task system τ executes upon a multi-
processor platform with m ∈ N>0 identical-speed processing
cores. The processing platform is enabled with both dynamic
power management (DPM) and dynamic voltage and fre-
quency scaling (DVFS) capabilities. With respect to DPM
capabilities, we assume that the processing platform has the
ability to turn off any number of cores between 0 and m− 1.
For DVFS capabilities, in this work, we assume that there is
a system-wide homogeneous frequency f > 0 (where f is
drawn from the positive continuous range – i.e., f ∈ R>0)
which indicates the frequency at which all cores are executing

at any given moment. In short, at any moment in the execution
of the system, if k � m processing cores are switched on and
m − k cores are switched off (DPM) and the homogeneous
frequency of the system is set to the value f (DVFS), it means
that k cores run at frequency f and m − k cores “run” at
frequency 0.

The power function P (f, k) indicates the power dissipation
rate of the processing platform when executing with k active
cores at a frequency of f . We assume that P (f, k) is a
non-decreasing, convex function. See section VII-A3 for an
instance of this function in our simulations.

The interpretation of the frequency is that if τi is executing
job J� on k� processors at frequency f over a t-length interval
then it will have executed t× γi,k�

× f units of computation.
The total energy consumed by executing k cores over the t-
length interval at frequency f is t× P (f, k).

Since we are considering a single system-wide homoge-
neous frequency, a natural question is: does the ability to
dynamically change frequencies during execution contribute
towards our goal of reducing power and/or meeting job
deadlines? We can show that the answer to the question is
“no”; it turns out that there exists a single optimum frequency
for a given set of malleable real-time tasks:
Property 1 (Obtained by extension of Aydin [18], and Ishihara
and Yasuura [19]). In a multiprocessor system with global
homogeneous frequency in a continuous range, choosing dy-
namically the frequency is not necessary for optimality in
terms of minimizing total consumed energy.

Proof. As [19] presented similar result, here we prove the
property for our framework.

Although we have a proof of this property for any convex
form of P (f, k), for space limitation in the following, we
will consider that P (f, k) ∝ f3 (notice that k is a constant
in our analysis). Assume we have a schedule at the constant
frequency f on the (multiprocessor) platform that is feasible
for τ . We will show that any dynamic frequency schedule —
that is also feasible for τ— consumes not less energy.

First notice that from any dynamic frequency schedule we
can obtain a constant frequency schedule (which schedules the
same amount of work) by applying, sequentially, the following
transformation: given a dynamic frequency schedule in the
interval [a, b] which works at frequency f1 in [a, �) and at
frequency f2 in [�, b] we can define the constant voltage such
that at that frequency the executed amount of each task τi ∈ τ
remains the same as the execution in the dynamic-frequency
schedule over [a, b].

Without loss of generality we will consider schedule in the
interval [0, 1] working at the constant frequency f and the
dynamic schedule working at frequency f +Δ in [0, �) and at
the frequency f −Δ� in [�, 1]. Since the transformation must
preserve the amount of work completed we must have:

f = �(f +Δ) + (1− �)(f −Δ�)

⇔ Δ� def
=

�Δ

1− �
(1)

since the extra work in [0, �) (i.e., Δ�) must be equal to the
spare work in [�, 1] (i.e., Δ�(1− �)).

Now we will compare the relative energy consumed by both



the schedules, i.e., we will show that

�(f +Δ)3 + (1− �)(f − �Δ

1− �
)3 � f3 (2)

We know that �(f+Δ)3 = �(f3+3f2Δ+3fΔ2+Δ3) and
(1−�)(f− �Δ

1−� )
3 = (1−�)(f3−3f2 �Δ

1−�+3f �2Δ2

(1−�)2 − �3Δ3

(1−�)3 ).
(2) is equivalent to (by subtracting f3 on the both sides)

Δ

�
3�fΔ+ �Δ2 + 3f

�2Δ

(1− �)
− �3Δ2

(1− �)2

�
� 0

Or equivalently (dividing by �Δ):

3Δf +Δ2 + 3f
�Δ

(1− �)
− �2Δ2

(1− �)2
� 0

⇐ (f −Δ� > 0 and, by (1))

3Δf +Δ2 + 3
�Δ

1− �

�Δ

(1− �)
− �2Δ2

(1− �)2
� 0

⇐
3Δf +Δ2 + 2

�2Δ2

(1− �)2
� 0

which always holds because Δ > 0 and f > 0.
To complete the proof we must show that our transformation

preserves the amount of execution for each job of τ over
its release and deadline. Consider the execution of a job of
τi over some interval [a, b] (where a, b ∈ N) between its
release and deadline where τi executed e1 units over [a, �)
and e2 over [�, b] (where � ∈ N). Furthermore, consider
that one interval executes proportionally more of τi than the
other interval. Without loss of generality, let e1

�−a > e2
b−� . We

can show that the schedule consumes less of the process-
ing time (and thus remains feasible in the single frequency
schedule). The next subsection introduces an optimal parallel
scheduler that can execute each task over every unit-length
interval at a pre-specified rate. Using this scheduler, over
[a, a + 1), [a + 1, a + 2), . . . [� − 1, �), we can execute e1

�−a
units in each interval. Similarly, we can execute e2

b−� units in
each unit-length interval of [�, b]. Since the rate of execution
is higher for the first interval and lower for the second, the
level of parallelism for τi must be greater in the first. If we
instead execute e1+e2

b−a over all intervals, the total amount of
execution is preserved. However, the total processing required
is decreased as the speed-up is concave function over the level
of parallelism (due the properties of sub-linear speedup ratio
and work-limited parallelism). Thus, over each job-release
and deadline of τi, we can use a constant rate of execution.
Since we have an implicit-deadline task system, this rate is
maintained over all intervals.

As a consequence, without loss of generality, we will
consider systems where the number of active cores and the
homogeneous frequency is decided prior the execution of the
system, i.e., offline.

D. Scheduling Algorithm
In this paper, we use a scheduling algorithm originally de-

veloped for non-power-aware parallel real-time systems called
the canonical parallel schedule [4]. The canonical scheduling

approach is optimal for implicit-deadline sporadic real-time
tasks with work-limited parallelism and sub-linear speedup
ratio upon an identical multiprocessor platform (i.e., each
processor has identical processing capabilities and speed).
In this paper, we consider also an identical multiprocessor
platform, but permit both the number of active processors
and homogeneous frequency f for all active processors to be
chosen prior to system run-time. In this subsection, we briefly
define the canonical scheduling approach with respect to our
power-aware setting.

Assuming the processor frequencies are identical and set to
a fixed value f , it can be noticed that a task τi requires more
than k processors simultaneously if ui > γi,k f ; we denote by
ki(f) the largest such k (meaning that ki(f) is the smallest
number of processor(s) such that the task τi is schedulable on
ki(f) + 1 processors at frequency f ):

ki(f)
def
=

�
0, if ui ≤ γi,1 f

maxmk=1{k | γi,k f < ui}, otherwise.
(3)

The canonical schedule fully assigns ki(f) processor(s) to
τi and at most one additional processor is partially assigned
(see [4] for details). This definition extends the original
definition of ki from non-power-aware parallel systems [4].

As an example, let us consider the task system τ = {τ1, τ2}
to be scheduled on m = 3 processors with f = 1. We have
τ1 = (6, 4,Γ1) with Γ1 = (1.0, 1.5, 2.0) and τ2 = (3, 4,Γ2)
with Γ2 = (1.0, 1.2, 1.3). Notice that the system is infeasible
at this frequency if job parallelism is not allowed since τ1 will
never meet its deadline unless it is scheduled on at least two
processors (i.e., k1(1) = 1). There is a feasible schedule if the
task τ1 is scheduled on two processors and τ2 on a third one
(i.e., k2(1) = 0).

E. Problem Definition

We are now prepared to formally state the problem ad-
dressed in this paper.

Given a malleable, implicit-deadline sporadic task
system τ , DVFS/DPM-enabled processor with m
cores, and canonical parallel scheduling, we will
determine (offline) the optimal choice of system-
wide homogeneous frequency f and number of
active cores k such that P (f, k) is minimized and
no task misses a deadline in the canonical schedule.

To solve this problem, we will introduce an algorithm, based
on the schedulability criteria of the canonical schedule, to
determine the optimal offline frequency/number of processors
combination and evaluate our solution over simulations.

IV. PRELIMINARY RESULTS

In this section, we restate the schedulability criteria for
canonical scheduling under homogeneous frequencies and
show that the criteria is sustainable (i.e., a schedulable system
remains schedulable even if the frequency or number of active
cores is increased). We will use these results in the next section
to develop an algorithm for determining the optimal choice of
number of active cores (k) and system-wide frequency (f ).



A. Schedulability Criteria of Malleable Task System with
Homogeneous Frequency

As we gave in Section III-C the mathematical interpretation
of the parameter f over system execution, it is easy to adapt
the schedulability criteria of [4] to a power-aware schedule.
Indeed, we just have to replace ui by ui

f in schedulability
conditions. This lead us to the following theorem.
Theorem 1 (extended from Collette et al. [4]). A necessary
and sufficient condition for an implicit-deadlines sporadic mal-
leable task system τ respecting sub-linear speedup ratio and
work-limited parallelism, to be schedulable by the canonical
schedule on m processors at frequency f is given by:





maxni=1{ki(f)} < m and

�n
i=1

�
ki(f) +

ui−γi,ki(f)f

(γi,ki(f)+1−γi,ki(f))f

�
� m .

(4)

Given the above schedulability criteria, we can easily obtain
an algorithm for determining in O(n logm) — with ki(f)
computed by binary search over m values — whether the
set of n tasks on m identical processing cores running all
at frequency f is schedulable (see Algorithm 1).

B. Sustainability of the Frequency for the Schedulability

In this section, we will prove an important property of
our framework: sustainability. We will prove that if a system
is schedulable, then increasing the homogeneous frequency
will maintain the schedulability of the system. This implies
that there is a unique minimum frequency for a couple task
system/number of processors to be schedulable. The algorithm
introduced in Section V will use this property to efficiently
search for this optimal minimum frequency. In order to prove
that property, we will need several new notations and concepts.
Definition 2 (Minimum Number of Processors for a Task).
For any τi ∈ τ , the minimum number of processors is denoted
by:

Mi(f)
def
= ki(f) +

ui − γi,ki(f)f

(γi,ki(f)+1 − γi,ki(f))f

Therefore, we can define the same notion system-wide:

Mτ (f)
def
=

n�

i=1

Mi(f)

Figure 1 illustrates the behaviour of ki(f) and Mi(f).
(The dotted curved line corresponds to Mi(f) and the solid-
step line corresponds to ki(f)). Based on this definition, the
schedulability criteria (4) becomes:

n
max
i=1

{ki(f)} < m and Mτ (f) � m . (5)

This definition will be useful in the following main theorem.
Theorem 2. The schedulability of the system is sustainable re-
garding the frequency, i.e., increasing the frequency preserves
the system schedulability.
Proof Sketch: We only provide a sketch of the theorem proof.
Observe that both ki(f) and Mi(f) (and also Mτ (f)) are
monotonically non-increasing in f . Thus, if the conditions of
Equation (5) are satisfied for a given f , they will continue
to be satisfied for any f � � f since Mi(f

�) � Mi(f) and
ki(f

�) � ki(f).

0.75
ui

γi,3

1
ui

γi,2

1.5
ui

γi,1

ki,Mi

1

2

m = 3

f

Fig. 1: Plot of ki and Mi for m = 3, τi = (6, 4, �1.0, 1.5, 2.0�)

V. OPTIMAL PROCESSOR/FREQUENCY-SELECTION
ALGORITHM

A. Algorithm Description

Theorem 2 implies that there is a minimum frequency for
the system to be schedulable. The challenge of this section is to
inverse the function Mτ (f) in order to have an expression of
the frequency depending of the number of processors m. This
is not trivial because Mτ (f) is the sum of a continuous term
and discontinuous term (the expression of ki(f)). Furthermore,
since we assumed that f is potentially any real positive num-
ber, the mathematical sound way to obtain the optimal value of
f is to determine it analytically. See section VI for a discussion
about this. We present an algorithm that computes the exact
optimal minimum frequency for a particular task system τ and
a number of active processing cores m in O(n2 log22 m) time
(see Algorithm 2). We then use this algorithm in conjunction
of the power function P (f, k) to determine the optimal number
of active cores and system-wide frequency.

Consider fixing each ki(f) term (for i = 1, . . . , n) with
values κ̄1, κ̄2, . . . , κ̄n ∈ {0, 1, . . . ,m−1}, each corresponding
to the number of processors potentially assigned to each task τi
at a frequency f . Then, from Definition 3 we can replace ki(f)
by κ̄i in schedulability inequations (5). The first condition is
always true because by choice of κ̄i. For the second condition:

n�

i=1

κ̄i +
ui − γi,κ̄i

f

(γi,κ̄i+1 − γi,κ̄i
) f

� m .

By isolating f , this is equivalent to:

f �
�n

i=1
ui

γi,κ̄i+1−γi,κ̄i

m−�n
i=1

�
κ̄i − γi,κ̄i

γi,κ̄i+1−γi,κ̄i

� def
= Ψτ (m, κ̄) ,

where κ̄
def
= �κ̄1, κ̄2, . . . , κ̄n�. We have derived a lower bound

on the frequency that satisfies Equation (5) given fixed κ̄.
Notice in solving for f in the above paragraph, it is possible

that we have chosen values for κ̄ that do not correspond to the
ki(f) values. If so, then the value returned by Ψτ (m, κ̄) may
not correspond to a frequency for which τ is schedulable.
To address this problem, we may symmetrically also fix
a frequency f and determine the corresponding values of
ki(f) according to Equation (3). Let κ̄τ (f) be the vector
�k1(f), k2(f), . . . , kn(f)�. For all τi ∈ τ , ki(f) < m if



f > ui/γi,m. Thus, if f > maxni=1{ui/γi,m} and the
following inequality is satisfied, then Theorem 1 and τ is
schedulable given frequency f .

f � Ψτ (m, κ̄(f)). (6)
Recall that our goal is to minimize the non-decreasing

function P (f, k). Therefore, we want the smallest f >
maxni=1{ui/γi,m} that satisfies Inequation (6) which leads to
the following definition.
Definition 3 (Minimum optimal frequency). The minimum
optimal frequency of a system τ schedulable on m active
processors is denoted as f

(τ,m)
min . Formally,

f
(τ,m)
min

def
= min{f ∈ R>0 | schedulable(τ,m, f)} ,

where schedulable(τ,m, f) is true if and only if (5) holds. Note
this minimum corresponds to f when (6) achieves equality.

Consider now taking the inverse of function ki(f):

k−1
i (κ)

def
=

�
{f | ui

γi,κ+1
� f < ui

γi,κ
} if 0 < κ � m

[ ui

γi,1
,∞) otherwise.

(7)

We can see that k−1
i is indeed the inverse function of ki by

looking at the behaviour of ki illustrated by Figure 1. Further-
more, by the definition of k−1

i we can see that ki(f) remains
fixed for all f over the interval [ ui

γi,κ+1
, ui

γi,κ
) for each different

κ : 0 � κ � m. Using this observation and the fact that any
schedulable frequency f is greater than maxni=1{ui/γi,m},
we only need to check Inequality (6) at values of f from
the set

�m
κ=1{ ui

γi,κ
} to determine the maximum κi such that

τ is schedulable. The main idea of Algorithm 2 is that we
determine for each τi ∈ τ the maximum value of κi for the
system to be schedulable. Using these determined values of
κi’s, we can evaluate Ψτ (m, κ̄

def
= �κ̄1, . . . , κ̄n�) to obtain the

solution f
(τ,m)
min .

Algorithm 1: schedulable(τ,m, f)

sum ← 0
for τi ∈ τ do

κi ← ki(f)
if κi = m then

return False
sum ← sum+ κi +

ui−γi,κi
×f

(γi,κi+1−γi,κi
)×f

return m � sum

Algorithm 2: minimumOptimalFrequency(τ,m)

for i ∈ {1, 2, . . . , n} do
if schedulable(τ,m, ui

γi,m
) then

κ̄i ← m− 1

else
κ̄i ← minm−1

κ=0 {κ | not schedulable(τ,m, ui

γi,κ+1
)}

κ̄
def
= �κ̄1, κ̄2, . . . , κ̄n�

return Ψτ (m, κ̄)

To compute schedulable(τ,m, f), we determine the value
of ki(f) from frequency f according to (3), which can be
obtained in O(log2 m) time by binary search over m values. To
calculate ki(f) for all τi ∈ τ and sum every Mi(f) terms, the

Algorithm 3: frequencyCoreSelection(τ,m)

�min ← 1
f�min ← minimumOptimalFrequency(τ, 1)
for � ∈ {2, 3, . . . ,m} do

f� ← minimumOptimalFrequency(τ, �)
if P (f�, �) < P (f�min

, �min) then
�min ← �
f�min ← f�

return �f�min
, �min�

total time complexity of the schedulability test is O(n log2 m).
See Algorithm 1 for a complete sketch of this algorithm.

In Algorithm 2 aimed at calculating f
(τ,m)
min , the value of

κ̄i can also be found by binary search and takes O(log2 m)
time to compute. This is made possible by the sustainability
of the system regarding the frequency (proved by Theorem 2).
Indeed, if τ is schedulable on m processors with f = ui

γi,κi+1
,

then it’s also schedulable with f = ui

γi,κi
> ui

γi,κi+1
.

In order to calculate the complete vector κ̄, there will be
O(n log2 m) calls to the schedulability test. Since computing
Ψτ is linear-time when the vector κ̄ is already stored in
memory, the total time complexity to determine the optimal
schedulable frequency for a given number of processors is
O(n2 log22 m). In order to determine the optimal combination
of frequency and number of processors, we simply iterate
over all possible number of active processors � = 1, 2, . . . ,m
executing Algorithm 2 with inputs τ and �. We return the
combination that results in the minimum overall power-
dissipation rate (computed with P (f

(τ,�)
min , �)). Thus, the overall

complexity to find the optimal combination is O(mn2 log22 m).
See Algorithm 3 for the complete description.

B. An Example

Let us use the same example system than previously intro-
duced in Section III-D. Consider τ = {τ1, τ2} to be scheduled
on m = 3 identical processors. Tasks are defined as follow :
τ1 = (6, 4,Γ1) with Γ1 = (1.0, 1.5, 2.0) and τ2 = (3, 4,Γ2)
with Γ2 = (1.0, 1.2, 1.3). The vector κ̄ corresponding to
this configuration computed by the algorithm is equal to
(κ̄1 = 2, κ̄2 = 0). This implies that the optimal minimum
frequency (Algorithm 2) for this system to be feasible on 3

processors is equal to f
(τ,m)
min = Ψτ (3, �2, 0�) = 0.9375. We

can see that if we call the feasibility test function (Algorithm 1)
for any frequency greater or equal than 0.9375, it will return
True; it will return False for any lower value.

C. Proof of Correctness

Theorem 3. Algorithm 2 returns f
(τ,m)
min .

Proof Sketch: We only give a brief sketch of the proof. By
the arguments in Section V-A, Algorithm 2 chooses for each
τi ∈ τ the maximum κ̄i such that the system is schedulable.
Let f � equal Ψτ (m, κ̄) where κ̄ is the values of κ̄i determined
in Algorithm 2. Note that for all τi ∈ τ , Mi(f

�) equals κ̄i +
ui−γi,κ̄i

f �

(γi,κ̄i+1−γi,κ̄i)f � . Therefore, it must be that

f � = Ψτ (m, κ̄(f �)).



Since (6) has reached equality with f �, this is the smallest
frequency such that τ is schedulable. Therefore, f � must be
equal to f

(τ,m)
min .

VI. PRACTICAL CONSIDERATIONS

This section discusses some of our choices and assumptions
for this work with regard to reality or practical implementation.

A. Continuous range frequency selection

We made the assumption in section III-C that the ho-
mogeneous frequency of the processing platform is drawn
from the positive continuous range — i.e., f ∈ R>0. It is
worth mentioning that in practice the available frequencies
are always drawn from a discrete and finite set. As this set
is reasonably small, exhaustive search (by binary search over
all available frequencies) could be an applicable approach
to determine the minimum optimal frequency value. This
approach has an even better complexity than our analytical
approach. However, we choose to provide the exact analytical
solution due to the generality of the solution and the fact
that continuous frequencies can be emulated with discrete
frequencies (as discussed below).

Notice that having the analytical expression of f
(τ,m)
min , we

can always find the smallest available frequency for which
the system remains schedulable. For a given platform with
discrete and finite frequency set F def

= {f1, f2, . . . , fp}, with
f1 < f2 < . . . < fp, we define the following ceiling operator,
which represents the smallest available frequency greater than
the given analytical frequency:

�f�F def
= min{fi ∈ F | fi � f} .

We just have to take �f (τ,m)
min �F to select the smallest avail-

able frequency able to schedule the task system. Notice that
if �f (τ,m)

min �F > f
(τ,m)
min , i.e., the smallest available frequency is

slightly higher than the optimal frequency, the system will not
be saturated and some idle instants will appear in the execution
of the system.

Symmetrically, we can also define a floor operator, which
represents the greatest available frequency smaller than the
given analytical frequency:

�f�F def
= max{fi ∈ F | fi � f} .

Therefore, even if the chosen running platform has only
a discrete set of frequencies F, the minimum analytical fre-
quency f

(τ,m)
min could be emulated by switching between the

frequency above and the frequency below, removing then the
idle instants introduced by taking a too large frequency.

Indeed, the analytical frequency f
(τ,m)
min can be approximated

by switching between the two nearest discrete frequencies
f�

def
= �f (τ,m)

min �F and fh
def
= �f (τ,m)

min �F. We have f ∈ [f�, fh].
Then we define α such that f

(τ,m)
min = αfh + (1 − α)f�.

Solving this for α will give us the amount of time in each time
unit that we should run at the high/low frequencies to obtain
f
(τ,m)
min , saving then more power than only running the system

at frequency fh, which would have been selected by binary
search of the set of frequencies F. Notice that we assume for

this that the overheads of switching frequency at run-time can
be neglected. Ishihara and Yasuura [19] uses this technique for
convex power functions and extends Property 1 for a discrete
set of frequencies. This justifies the need for an algorithm
computing the exact analytical minimum frequency.

Finally, it is possible that no available frequency is higher
than the computed optimal minimum analytical frequency,
i.e., f (τ,m)

min > fp = max(F). It means that the malleable jobs
of the system cannot meet their deadlines even at the highest
speed available on the target platform. It is said so that the
system is not schedulable on the chosen platform. Notice that
in our simulations, we have made the assumption that it will
never be the case: we simply determine f

(τ,m)
min such that the

system is schedulable and it requires that the chosen platform
is capable of running at this frequency (even if this frequency
is greater than 1).

B. Linear dependency between frequency and job execution
speed

In section III-C, we made the assumption throughout this
paper that there is a linear dependency between processor
frequency and execution time. As this is not really accurate in
practice – other factors can have huge impact on job execution:
cache synchronisation, memory latencies, etc. – this simplify-
ing hypothesis is often made in the scheduling literature, e.g.
in the popular uniform parallel machine model1 [20].

To better cope with potential practical implementation, we
could define, for each task, a notion of functional utilization:

ui : R>0 → R>0 : f �→ ui(f)

Instead of replacing ui by ui

f in the schedulability criteria
(as it is done in section IV-A), we would replace ui by this
function ui(f). The definition of this function would define
how the execution time of a task would be impacted by
the selection of a given frequency f . As we assumed in the
rest of the paper that the dependency between frequency and
execution time was linear, we implicitly set ui(f)

def
= ui

f .
Other more realistic choices could have been made (and
would be in future research) for the definition of ui(f), but
notice that this could have an impact on the optimality of
the underlying scheduling algorithm. In particular, for a non-
linear dependency, optimality of the canonical schedule would
be lost.

It is easy to integrate this non-linear dependency with a
restricted and finite set of available frequencies (as discussed
in VI-A): we just have to restrict the domain of the function.

VII. SIMULATIONS

In order to investigate the potential benefit of parallelism
upon power consumption, we have evaluated our algorithm
with random simulations. In this section, we describe and
discuss the high-level overview of the methodology employed
in our evaluation and the results obtained from our simulations.

1Each processor in a uniform parallel machine is characterized by its own
computing capacity. A processor with computing capacity s executing a job
for t time units is processing s× t units of execution.
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Fig. 2: Speedup Vectors for strong and weak parallelized
systems.

# cores ΓWPS ΓSPS # cores ΓWPS ΓSPS
1 1.0 1.000 9 2.6 7.926
2 1.9 1.990 10 2.7 8.559
3 2.0 2.970 11 2.8 9.185
4 2.1 3.913 12 2.9 9.771
5 2.2 4.801 13 3.0 10.271
6 2.3 5.670 14 3.1 10.726
7 2.4 6.505 15 3.2 11.148
8 2.5 7.255 16 3.3 11.558

Fig. 3: Values of speedup vectors for WPS and SPS.

A. Methodology Overview

The details for each step of our simulation framework are
the following:

1) Random Task Sets Generation: We randomly generate
execution times ei and periods pi with the Stafford’s
RandomVectorsFixedSum algorithm [21] that is
proven [22] to generate uniformly-distributed multiprocessor
task systems (i.e., usum > 1). As in our case we want to
model tasks with individual utilization ui not bounded by
1,2 we slightly modified the way the authors of [22] use the
RandomVectorsFixedSum algorithm to permit ui > 1
when generating task parameters.

2) Speedup Vectors Values: To fix the speedup vectors
of these task systems, we have modeled the execution be-
havior of two kinds of parallel systems: one not affected
significantly by communication and I/O overheads, called the
strong parallelized system (SPS), and another one heavily
affected by communication and I/O overheads, called the weak
parallelized system (WPS). A task of the SPS will have a
speedup vector with better values than the one of the WPS.
The values used in our simulations for ΓSPS, the vector for
SPS, and ΓWPS, the vector for WPS are presented hereafter.
Notice that both vectors respects sub-linear speedup ratio and
work-limited parallelism, as defined in Section III. Simulations
are done for 1 to 16 cores, so there is 16 values for each
vector. Values of these two vectors are plotted on Figure 2
and explicitly presented in array-format on Figure 3.

2With the theoretical interpretation that a task with ui > 1 will either
need to be scheduled on a platform with a frequency greater than 1, either
be modelled as a malleable tasks and thus scheduled on several processing
cores.

3) Power Dissipation Rate: We define the total power con-
sumption, introduced in Section III-C, by dynamic and static
power portions to closely resembles a physical processing
platforms [23]. The static (leakage) power consumption of a
processor can be as high as 42% of total power and depends on
many factors [24]. In this research, we let the processor static
power equal 15% of the total dynamic power when running
at unit frequency. For this simulation, we use, P (f, k) =
f3k+0.15× k, where f is the processing frequency and k is
the number of active cores; the two additive terms represent
dynamic and static power, respectively, and both depend on
k. This model is sound regarding the physical behaviour of
power consumption on CMOS processors platform, and many
former real-time researches such as [23] use it. This model
gives us a tool to compare power savings in the parallel
schedule w.r.t. to the non-parallel schedule. It is not expressed
in Watts, as it does not describe a real machine, but is useful
to relatively compare the different solutions evaluated in our
abstract simulations. Notice that it respects constraint of the
function as defined in Section III-C. Power consumption is
then computed in function for each of the frequency/number
of actives cores choices taken in Step 4.

4) Minimum Frequency/Number of Active Cores Determi-
nation: The goal of our simulations is to compare the power
consumption for task systems in the three following settings:

• when tasks are strongly parallelized (with SPS vector);
• when tasks are weakly parallelized (with WPS vector);
• when tasks are not parallelized, i.e. scheduled with the

traditional non-parallel optimal schedule.
Therefore, for each task system generated in Step 1, we com-
pute three distinct frequency/number of active cores couple
values: the two first couple values are those returned by
Algorithm 3 to optimally schedule the system when tasks
are strongly parallelized and weakly parallelized. Using this
Algorithm we make use of both DVFS (frequency selection)
and DPM (number of turned on cores selection). For simplicity
in our simulations, when evaluating the minimum frequency
to schedule task systems for SPS (resp. WPS), the same
vector ΓSPS (resp. ΓWPS) is set to each task of the system.
The function P (f, k) used in Algorithm 3 is defined in
Step 3. For the third couple value, the frequency/number of
active cores selected is the optimal one w.r.t. traditional non-
parallel (i.e., sequential) technique. To compute the minimum
frequency required for a non-parallel scheduling algorithm
(referred to as SEQ) with a fixed number of active cores,
remember that the optimal schedulability criteria for sequential
multiprocessor system on DVFS platform where the frequency
is choosen offline is the following (we assume γi,1 = 1∀ i):�

umax

f � 1
usum
f � m.

Therefore, the minimum optimal frequency for a fixed num-
ber of cores m is denoted as f

(τ,m)
seq

def
= max

�
umax,

usum
m

�
.

As we want to compare parallel and sequential schedule
with the same DVFS/DPM features, we want to select the
couple frequency/number of active cores that minimize the
function P (f, k) (like in the parallel case). Therefore, we
call a modified version of Algorithm 3, with the function



minimumOptimalFrequency(τ, �) returning f
(τ,�)
seq instead of

f
(τ,�)
min .

For example, consider τ = {τ1, τ2} to be scheduled on a
platform with m = 3 processing cores where e1 = 6, p1 = 4,
e2 = 3 and p2 = 4. We then have u1 = 3

2 and u2 = 3
4 and

Algorithm 3 returns, for each of the three settings,

�f (τ,�sps)
sps = 0.7525, �sps = 3� �→ P (3, 0.7525) = 1.72845

�f (τ,�wps)
wps = 0.7875, �wps = 3� �→ P (3, 0.7875) = 1.9151

�f (τ,�seq)
seq = 1.5, �seq = 2� �→ P (2, 1.5) = 7.05 .

We can already see on this simple example that the gain from
sequential to parallel is substantial. Notice that even in non-
parallel setting, we allow:

• individual utilization not bounded (ui > 1 is permitted);
• total utilization not bounded (usum > m is permitted);
• homogeneous frequency is not bounded (f > 1 is

permitted).
It is important to notice that utilization is not bounded. For
example, it is not a problem to have a total utilization greater
than m: it just requires a running homogeneous frequency
greater than 1. Like addressed in section VI-A, if the higher
frequency available on the target platform is less than the one
computed by our algorithm, it means that the task system is
not schedulable on this target platform.

5) Results Comparison: Using the random-task generator
introduced in Step 1, we generate task systems with 8 tasks3.
The total system utilization is varied from 1.5 to 32.0 by 0.1
increments and number of available cores are varied from 1 to
16. The simulation runs for each task system/maximum num-
ber of cores pair. For each utilization point, we store the exact
frequency and number of active cores returned by Algorithm 3
and the associated power consumed (as defined in Step 3).
This is done three times, one for each setting (SPS, WPS
and SEQ) as explained in Step 4: our frequency/processor-
selection algorithm is compared against the power required
by an optimal non-parallel real-time scheduling approach. The
power gains of parallelisation are plotted in Figure 4 and
computed by taking the quotient between power consumed
by the system in sequential mode and in parallel (malleable)
mode, each time by taking the minimum frequency computed
in Step 3. This allows us to manipulate relative gain of the
parallel paradigm over the sequential one. Each data point is
the average power saving for 100 different randomly-generated
task systems (with the same total utilization).

B. Results & Discussion
Figures 4a, 4b, and 4c display the power savings obtained

from our simulations. Each point represents the average of
power saving ratios over 100 randomly generated systems each
having a fixed total utilization usum and maximum m number
of processing cores. The z-values of the plots are then:

• E[ P (fseq,kseq)
P (fwps,kwps)

] (Fig. 4a),

• E[P (fseq,kseq)
P (fsps,ksps)

] (Fig. 4b),

3The behaviour for n �= 8 would be quite similar.
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(a) Power savings for WPS over SEQ.
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(b) Power savings for SPS over SEQ.
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(c) Power savings for SPS over WPS.

Fig. 4: Average power savings of parallelized systems.

• and E[P (fwps,kwps)
P (fsps,ksps)

] (Fig. 4c),

where, in the setting x, fx represents the minimum optimal
frequency and kx represents the number of activated cores (1 �
kx � m) and E[.] represents the mean over 100 values.

The figures show then that the proposed algorithm has
substantial power savings over sequential optimal algorithm.
Furthermore, for strongly parallelized systems, the power sav-
ing is substantially larger, it further increases as with the higher
system utilization and number of available cores. On the other
hand, for weakly parallelized systems, the power gain saturates
quickly and does not increases anymore with the system
utilization and the number of available cores. We can see on
Fig. 4a that, even when the application is weakly parallelized
(strong communications and synchronisation overheads), the
power gain can be up to 4 × w.r.t. the sequential execution.
Moreover, in the strongly parallelized setup, power gain can
be up to 36 × w.r.t. the sequential execution (see Fig. 4b).

From these plots, there are a few noticeable trends:
• As the total utilization increases, the power savings in-

creases (for active processors greater than 2); the savings
appears to be due to the fact that high utilization work-
loads require higher frequency in the sequential approach
(and thus, more power) and can be easily distributed



amongst cores in the parallel approach.
• As the total number of available cores increase, the power

savings increases; the savings appears to be due to the fact
that non-parallel schedules will quickly reach the limit
where adding core does not impact the schedulability of
sequential jobs. Notice that this limits is also reached (less
quickly) by the WPS (where it saturates, cf. Fig. 4a).

We can conclude from this than the better jobs are parallelized
(i.e., the better are the γi,j values of the speedup vector), the
better are the power savings.

We can ask if the savings are biased by the fact that
ui can be greater than 1. Indeed, in our framework, in
sequential mode of execution, to reach deadlines for task with
ui > 1, there is no other choice than increasing the frequency
(to a value greater than 1). This could introduce a bias in
simulations based on a randomized ui thant can be either less
or greater than 1. However, we can see that power savings
are still present when ∀i : ui < 1 with this simple example:
τ = {τ1, τ2}, where e1 = 1, p1 = 10, e2 = 3 and p2 = 4. We
let the maximum number of cores of the platform be equal
to m = 4. For this task system, the power values are the
following:

�f (τ,�sps)
sps = 0.4266, �sps = 2� �→ P (2, 0.4266) = 0.4553

�f (τ,�wps)
wps = 0.4421, �wps = 2� �→ P (2, 0.4421) = 0.4728

�f (τ,�seq)
seq = 0.8500, �seq = 1� �→ P (1, 0.8500) = 0.7641

By scheduling malleable jobs, we observe in this example
relative power savings from 61% to 68% (depending of the
tasks’ speedup vector). Therefore parallelization helps also for
systems with only tasks with ui < 1.

VIII. CONCLUSIONS

In this paper, we show the benefits of parallelization for
both meeting real-time constraints and minimizing power con-
sumption. Our research suggests the potential in reducing the
overall power consumption of real-time systems by exploiting
job-level parallelism. We can see from simulation results that
power savings can be substantial even for system with weak
parallelization: they tend to use computational resources more
intelligently. For better parallelized system, the power gains
can be very high. Simulations of our algorithm on randomly
generated task systems executing on platforms having until 16
processing cores show that the theoretical power consumption
is up to 36 times better than the optimal non-parallel approach.

In the future, we will extend our research to investigate
power saving potential when the cores may execute at dif-
ferent frequencies and also incorporate thermal constraints
into the problem. We will consider more realistic application
models like the thread or the fork-join model. To avoid
over-simplification of platform and power model, we will
also consider practical implementations of parallel power-
aware online schedulers into a RTOS deployed upon an actual
hardware testbed and measure practical power savings directly
on this platform.
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