RTCSA'14 Power Minimization for Parallel Real-Time Systems with Malleable Jobs and Homogeneous Frequencies Antonio Paolillo

Joël Goossens Nathan Fisher

Pradeep M. Hettiarachchi

\int UUUUUUU

Π UUUUUUU

Π UUUUUUUU

Π

Π

Π UUUUUUUUUUU

\int

\int \bigcup UUUUUU

Goal = Save power

O Power-aware schedule

Power-aware schedule

Power-aware schedule

Power-aware schedule

Power-aware schedule

"The minimum **speed** is limited by the sequential job model"

- J. Anderson, S. Baruah

Can we save **more** with **parallelism**?

V

Number of cores

Parallel job model

Execution time

V

Number of cores

Parallel job model

Execution requirement

Execution time

Execution requirement

Execution time

Execution time

2 cores

V

Execution time 2.8

3 cores

Execution time 2

Sub-linear speedup ratio

 $A_2 = 5.6$

Processor Model

B *m* cores, *k* are actives homogeneous frequency f

Frequency Scaling

Execution requirement

Execution time

f = 1

Frequency Scaling

Number of cores

Execution time

f = 0.5

Scheduling decision

Power Model

k active cores homogeneous frequency fpower function P(f, k)

e.g. $P(f, k) = f^{3}k + 0.15 \times k$

Implicit-deadline sporadic tasks

Malleable jobs

DVFS/DPM-enabled processor with *m* cores

Homogeneous frequency

Canonical optimal scheduling

Find f and k such that P(f, k) is minimized

Implicit-deadline sporadic tasks

Malleable jobs

DVFS/DPM-enabled processor with *m* cores

Homogeneous frequency

Canonical optimal scheduling

Simulations

Randomly generated task systems

Compute minimum frequency for sequential and malleable

Evaluate savings with:

 $P(f_{seq}, k_{seq})$

 $P(f_{mal}, k_{mal})$

Simulation results

Simulation results

 $P_{mal} = P_{seq}$ Ratio = 1

35

 $P_{mal} = P_{seq}$ Ratio = 1
Conclusion

Parallel schedule helps to save power in theory.

23

Conclusion

Parallel schedule helps to save power in theory.

More practical model must be tested.

RTOS implementation must be evaluated.

23

More in paper

• Sub-linear speedup ratio [13]:

$$1 < \frac{\gamma_{i,j'}}{\gamma_{i,j}} < \frac{j'}{j}$$

where $0 < j < j' \leq m$.

• Work-limited parallelism [4]:

 $\gamma_{i,(j'+1)} - \gamma_{i,j'} \leq \gamma_{i,(j+1)} - \gamma_{i,j}$ where $0 \leq j < j' < m$.

Algorithm 2: minimumOptimalFrequency (τ, m) for $i \in \{1, 2, ..., n\}$ do if schedulable $(\tau, m, \frac{u_i}{\gamma_{i,m}})$ then $\ \ \bar{\kappa}_i \leftarrow m-1$ else $\bar{\kappa}_i \leftarrow \min_{\kappa=0}^{m-1} \{ \kappa \mid \text{not schedulable}(\tau, m, \frac{u_i}{\gamma_{i,\kappa+1}}) \}$ $\bar{\kappa} \stackrel{\text{def}}{=} \langle \bar{\kappa}_1, \bar{\kappa}_2, \dots, \bar{\kappa}_n \rangle$ return $\Psi_{\tau}(m, \bar{\kappa})$

Algorithm 3: frequencyCoreSelection (τ, m)

 $\ell_{\min} \leftarrow 1$ $f_{\ell_{\min}} \leftarrow \mathsf{minimumOptimalFrequency}(\tau, 1)$ for $\ell \in \{2, 3, ..., m\}$ do $f_{\ell} \leftarrow \mathsf{minimumOptimalFrequency}(\tau, \ell)$ if $P(f_{\ell}, \ell) < P(f_{\ell_{\min}}, \ell_{\min})$ then $\ell_{\min} \leftarrow \ell$ $f_{\ell_{\min}} \leftarrow f_{\ell}$ return $\langle f_{\ell_{\min}}, \ell_{\min} \rangle$

Theorem 1 (extended from Collette et al. [4]). A necessary and sufficient condition for an implicit-deadlines sporadic malleable task system τ respecting sub-linear speedup ratio and work-limited parallelism, to be schedulable by the canonical schedule on m processors at frequency f is given by:

$$\begin{cases} \max_{i=1}^{n} \{k_i(f)\} < m \quad and \\ \sum_{i=1}^{n} \left(k_i(f) + \frac{u_i - \gamma_{i,k_i(f)}f}{(\gamma_{i,k_i(f)+1} - \gamma_{i,k_i(f)})f}\right) \leqslant m . \end{cases}$$

$$\tag{4}$$

Other useful specific values are $u_{\max} \stackrel{\text{def}}{=} \max_{i=1}^{n} \{u_i\}$ and $u_{\text{sum}} \stackrel{\text{def}}{=} \sum_{i=1}^{n} u_i.$

A collection of sporadic tasks $\tau \stackrel{\text{def}}{=} \{\tau_1, \tau_2, \dots, \tau_n\}$ is called a sporadic task system. In this paper, we assume a common subclass of sporadic task systems called implicitdeadline sporadic task systems where each $\tau_i \in \tau$ must have its relative deadline equal to its period (i.e., $d_i = p_i$).

Fig. 1: Plot of k_i and M_i for $m = 3, \tau_i = (6, 4, (1.0, 1.5, 2.0))$

$$k_i(f) \stackrel{\text{def}}{=} \begin{cases} 0, & \text{if } u_i \le \gamma_{i,1} f \\ \max_{k=1}^m \{k \mid \gamma_{i,k} f < u_i\}, & \text{otherwise.} \end{cases}$$
(3)

The *canonical schedule* fully assigns $k_i(f)$ processor(s) to τ_i and at most one additional processor is partially assigned (see [4] for details). This definition extends the original definition of k_i from non-power-aware parallel systems [4].

Fig. 2: Speedup Vectors for strong and weak parallelized systems.

# cores	Γ_{WPS}	Γ_{SPS}	# cores	Γ_{WPS}	Γ_{SPS}
1	1.0	1.000	9	2.6	7.926
2	1.9	1.990	10	2.7	8.559
3	2.0	2.970	11	2.8	9.185
4	2.1	3.913	12	2.9	9.771
5	2.2	4.801	13	3.0	10.271
6	2.3	5.670	14	3.1	10.726
7	2.4	6.505	15	3.2	11.148
8	2.5	7.255	16	3.3	11.558

Fig. 3: Values of speedup vectors for WPS and SPS.