
Quantifying Energy Consumption
for Practical Fork-Join Parallelism
on an Embedded Real-Time Operating System

Antonio Paolillo - Ph.D student & software engineer

24th ACM International Conference on Real-Time Networks and Systems

21th October 2016

2

Goal:

3

Goal:

Parallelism helps to reduce energy
while meeting real-time requirements

4

5

Quantifying Energy Consumption
for Practical Fork-Join Parallelism
on an Embedded Real-Time Operating System

6

Quantifying Energy Consumption
for Practical Fork-Join Parallelism
on an Embedded Real-Time Operating System

7

Quantifying Energy Consumption
for Practical Fork-Join Parallelism
on an Embedded Real-Time Operating System

8

Quantifying Energy Consumption
for Practical Fork-Join Parallelism
on an Embedded Real-Time Operating System

9

Quantifying Energy Consumption
for Practical Fork-Join Parallelism
on an Embedded Real-Time Operating System

10

Quantifying Energy Consumption
for Practical Fork-Join Parallelism
on an Embedded Real-Time Operating System

11

Quantifying Energy Consumption
for Practical Fork-Join Parallelism
on an Embedded Real-Time Operating System

12

Quantifying Energy Consumption
for Practical Fork-Join Parallelism
on an Embedded Real-Time Operating System

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Combine:

● parallel task model
● Power-aware multi-core scheduling

55

Save more with parallelism? Yes!

Combine:

● parallel task model
● Power-aware multi-core scheduling

→ validated in theory → malleable jobs (RTCSA’14)

56

Save more with parallelism? Yes!

This work

Goal:

Reduce energy consumption as much possible
while meeting real-time requirements.

57

This work

Goal:

Reduce energy consumption as much possible
while meeting real-time requirements.

Validate it in practice

58

Validate in practice

● Parallel programming model

● RTOS techniques → power-aware multi-core hard real-time scheduling

● Evaluated with full experimental stack (RTOS + hardware in the loop)

● Simple, but real application use cases

59

1. Run-time framework

2. Task model and analysis

3. Experiments

60

1. Run-time framework

2. Task model and analysis

3. Experiments

61

Run-time framework

62

MPSoC platform

Run-time framework

63

MPSoC platform

 RTOS
 & lib support

Run-time framework

64

MPSoC platform

 RTOS
 & lib support

Run-time framework

65

MPSoC platform

 RTOS
 & lib support

 Parallel app.
 benchmark

Run-time framework

66

MPSoC platform

 RTOS
 & lib support

 Parallel app.
 benchmark

Parallel programming model

67

(Simple) Parallel Program

68

(Simple) Parallel Program Flow

69

(Simple) Parallel Program Flow

70

An embedded RTOS

71

An embedded RTOS

72

● Micro-kernel based

● Natively supports multi-core

● Provides hard-real time scheduling

● Power management fixed at task level

We developed HOMPRTL

→ OpenMP run-time support for HIPPEROS.

1. Run-time framework

2. Task model and analysis

3. Experiments

73

Parallel task model

74

Parallel task model

75

● Sporadic fork-join

● Arbitrary deadlines

● Rate monotonic based analysis

● Threads are partitioned

● 3 stages, very simple

Parallel task model

76

● Symmetric Multi-Core

● Global DVFS, finite set of operating points 〈 Vdd , f 〉

● Power increases monotonically with frequency

Platform model

77

Optimisation & partitioning process

78

Power optimisation

Partitioner

Schedulability test

Optimisation & partitioning process

79

Power optimisation

Partitioner

Schedulability test
Axer et al
proved wrong (shepherding)

1. Run-time framework

2. Task model and analysis

3. Experiments

80

1. Run-time framework

2. Task model and analysis

3. Experiments
a. Testbed description
b. Single use cases
c. Task systems

81

1. Run-time framework

2. Task model and analysis

3. Experiments
a. Testbed description
b. Single use cases
c. Task systems

82

Experimental stack

83

MPSoC platform

 RTOS
 & lib support

 Parallel app.
 benchmark

Experimental stack

84

MPSoC platform

 RTOS
 & lib support

 Parallel app.
 benchmark

Experimental stack

85

MPSoC platform

 RTOS
 & lib support

 Parallel app.
 benchmark

Measurement
framework

Experimental stack

86

MPSoC platform

 RTOS
 & lib support

 Parallel app.
 benchmark

Measurement
framework

Target platform - i.MX6q SabreLite

87

● Embedded board ARM Cortex A9 MP

● Supported by HIPPEROS

● 4 cores, but global DVFS

● Operating points

Operating points

88

Operating points

89

90

MPSoC

Embedded board

91

MPSoC

Embedded board

Power supply

220 V

220 V

Transformer

5 V

92

MPSoC

Oscilloscope

Embedded board

Power supply

220 V

220 V5 V

R

Voltage
measurements

P = V² / R

Transformer

93

MPSoC

Control Computer

Oscilloscope

Embedded board

Power supply

220 V

220 V5 V

R

Serial

JTAG

USB

Captured data

transfer

Oscilloscope

trigger
Voltage
measurements

P = V² / R

Transformer

HIPPEROS
Inputs Outputs

Serial

Use cases

94

MPSoC platform

 RTOS
 & lib support

 Parallel app.
 benchmark

Measurement
framework

Use cases

95

MPSoC platform

 RTOS
 & lib support

 Parallel app.
 benchmark

Measurement
framework

π

AES

Image

● Different workloads

● Easy OpenMP implementation

● Good scaling expected

Use cases

96

Image

AES π

1. Run-time framework

2. Task model and analysis

3. Experiments
a. Testbed description
b. Single use cases
c. Task systems

97

Use case alone - voltage probe output

98

Use case alone - converted to power values

99

Use case alone - execution time measurement

100

Use case alone - peak power measurement

101

Use case alone - energy measurement

102

Use case alone - execution time

103

Use case alone - peak power

104

Single core power consumption

105

P ∝ Vdd
2 f

 Vdd∝ f

Single core power consumption

106

P ∝ Vdd
2 f

 Vdd∝ f

→ P ∝ f
3

Multi-core power consumption

107

P ∝ k f
3

Use case alone - peak power

108

P ∝ k f 3

Use case alone - energy

109

Execution time speedup

110

Frequency scaling OpenMP parallelism

1. Run-time framework

2. Task model and analysis

3. Experiments
a. Testbed description
b. Single use cases
c. Task systems

111

System experiments

112

● Generate 232 random task systems (U = 0.6 → 2.9)

System experiments

113

● Generate 232 random task systems (U = 0.6 → 2.9)

● Bind generated tasks to use cases

System experiments

114

● Generate 232 random task systems (U = 0.6 → 2.9)

● Bind generated tasks to use cases

● Scheduling test & optimisation in Python for 1, 2, 3, 4 threads

System experiments

115

● Generate 232 random task systems (U = 0.6 → 2.9)

● Bind generated tasks to use cases

● Scheduling test & optimisation in Python for 1, 2, 3, 4 threads

● Operating points and threads partition for each task

System experiments

116

● Generate 232 random task systems (U = 0.6 → 2.9)

● Bind generated tasks to use cases

● Scheduling test & optimisation in Python for 1, 2, 3, 4 threads

● Operating points and threads partition for each task

● Generate HIPPEROS builds

System experiments

117

● Generate 232 random task systems (U = 0.6 → 2.9)

● Bind generated tasks to use cases

● Scheduling test & optimisation in Python for 1, 2, 3, 4 threads

● Operating points and threads partition for each task

● Generate HIPPEROS builds

● Run feasible systems and measures

System experiments

118

● Generate 232 random task systems (U = 0.6 → 2.9)

● Bind generated tasks to use cases

● Scheduling test & optimisation in Python for 1, 2, 3, 4 threads

● Operating points and threads partition for each task

● Generate HIPPEROS builds

● Run feasible systems and measures

System experiments

119

Energy consumption

120

Relative energy savings

121

Conclusions

122

● Practical experimental framework flow for parallel real-time applications

● Parallelisation saves up to 25% energy (the whole board)

● Confronted theory with practice
○ Speedup factors

○ Power measurements

● Challenge: integrate “OpenMP-like” programs in industry systems

Conclusion

123

Parallelism helps to reduce energy
while meeting real-time requirements

Thank you.

124

Questions?

125

Dynamic power vs static leakage

126

P ∝ k f
3 + α k

P ∝ k f
3 + α k

Dynamic power vs static leakage

127

dynamic static

Dynamic power vs static leakage

128

dynamic static

● α is platform-dependent

● Comparison between DVFS and DPM

P ∝ k f
3 + α k

● 232 systems for each degree of //
○ No high utilisation systems

→ Partitioned Rate Monotonic

○ Only feasible systems for 1 → 4 threads

● More threads consume less

● Low utilisation systems don’t need
high operating points (often idle)

● Analysis is pessimistic
for high number of threads

Energy consumption

129

● Same systems, but rel. to 1 thread

● Parallelism helps to save energy :-)

● ᶥ < 0.13, but not a lot of systems...

● “4 threads” dominates

● ↗ Utot ⇒ ↘ energy
○ Until Utot = 2.4
○ For high Utot :

■ Analysis pessimism

■ Schedulable systems only bias,
so already well distributed

■ Some systems are only schedulable in parallel

Relative energy savings

130

● “3 threads” is bad:
○ Loss of symmetry with 4 cores

○ Different tasks executes simultaneously (1+3)

● Measures on the whole platform
○ CPU alone would give better results

● Need more data
○ Charts would be smoother
○ But it takes time…

■ 1 minute/execution
■ 4 executions/system
■ 232 systems, ≈ 15 hours

Questions on experiment results

131

● Flawed, but does not impact results
○ Axer et al (ECRTS’13)

○ Flaw pointed by Fonseca et al (SIES’16)

● Scheduling framework
○ Part of the technical framework

○ Not the important contribution/result

● Will be improved with future work

Analysis technique

132

