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Goal:

Reduce energy consumption as much possible
while meeting real-time requirements.
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Validate in practice

● Parallel programming model

● RTOS techniques → power-aware multi-core hard real-time scheduling

● Evaluated with full experimental stack (RTOS + hardware in the loop)

● Simple, but real application use cases
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(Simple) Parallel Program
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(Simple) Parallel Program Flow
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An embedded RTOS
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An embedded RTOS
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● Micro-kernel based

● Natively supports multi-core

● Provides hard-real time scheduling

● Power management fixed at task level

We developed HOMPRTL

→ OpenMP run-time support for HIPPEROS.



1. Run-time framework

2. Task model and analysis

3. Experiments
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● Sporadic fork-join

● Arbitrary deadlines

● Rate monotonic based analysis

● Threads are partitioned

● 3 stages, very simple

Parallel task model
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● Symmetric Multi-Core

● Global DVFS, finite set of operating points  〈 Vdd , f 〉

● Power increases monotonically with frequency

Platform model
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Optimisation & partitioning process
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Power optimisation

Partitioner

Schedulability test
Axer et al
proved wrong (shepherding)



1. Run-time framework

2. Task model and analysis

3. Experiments

80



1. Run-time framework

2. Task model and analysis

3. Experiments
a. Testbed description
b. Single use cases
c. Task systems

81



1. Run-time framework

2. Task model and analysis

3. Experiments
a. Testbed description
b. Single use cases
c. Task systems

82



Experimental stack

83

MPSoC platform

       RTOS
       & lib support

         Parallel app.
         benchmark



Experimental stack

84

MPSoC platform

       RTOS
       & lib support

         Parallel app.
         benchmark



Experimental stack

85

MPSoC platform

       RTOS
       & lib support

         Parallel app.
         benchmark

Measurement 
framework



Experimental stack

86

MPSoC platform

       RTOS
       & lib support

         Parallel app.
         benchmark

Measurement 
framework



Target platform - i.MX6q SabreLite
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● Embedded board ARM Cortex A9 MP

● Supported by HIPPEROS

● 4 cores, but global DVFS

● Operating points
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MPSoC

Control Computer

Oscilloscope

Embedded board

Power supply

220 V

220 V5 V

R

Serial

JTAG

USB

Captured data

transfer

Oscilloscope

trigger
Voltage 
measurements

P = V² / R

Transformer

HIPPEROS 
Inputs Outputs

Serial
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● Different workloads

● Easy OpenMP implementation

● Good scaling expected

Use cases
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1. Run-time framework

2. Task model and analysis

3. Experiments
a. Testbed description
b. Single use cases
c. Task systems
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Use case alone  -  voltage probe output
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Use case alone  -  converted to power values
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Use case alone  -  execution time measurement
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Use case alone  -  peak power measurement

101
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Use case alone  -  execution time
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Use case alone  -  peak power
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Single core power consumption
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Single core power consumption
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P ∝ Vdd
2 f

 Vdd∝ f

→ P ∝ f 
3



Multi-core power consumption
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Use case alone  -  peak power
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Use case alone  -  energy
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Execution time speedup
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Frequency scaling OpenMP parallelism
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Conclusions
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● Practical experimental framework flow for parallel real-time applications

● Parallelisation saves up to 25% energy (the whole board)

● Confronted theory with practice
○ Speedup factors

○ Power measurements

● Challenge: integrate “OpenMP-like” programs in industry systems



Conclusion
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Parallelism helps to reduce energy
while meeting real-time requirements



Thank you.
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Questions?
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Dynamic power vs static leakage
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dynamic static

● α is platform-dependent

● Comparison between DVFS and DPM

P ∝  k  f 
3 + α k



● 232 systems for each degree of //
○ No high utilisation systems

→ Partitioned Rate Monotonic

○ Only feasible systems for 1 → 4 threads

● More threads consume less

● Low utilisation systems don’t need
high operating points (often idle)

● Analysis is pessimistic
for high number of threads

Energy consumption
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● Same systems, but rel. to 1 thread

● Parallelism helps to save energy :-)

● ᶥ < 0.13,  but not a lot of systems...

● “4 threads” dominates

● ↗ Utot ⇒ ↘ energy
○ Until Utot = 2.4
○ For high Utot :

■ Analysis pessimism

■ Schedulable systems only bias,
so already well distributed

■ Some systems are only schedulable in parallel

Relative energy savings
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● “3 threads” is bad:
○ Loss of symmetry with 4 cores

○ Different tasks executes simultaneously (1+3)

● Measures on the whole platform
○ CPU alone would give better results

● Need more data
○ Charts would be smoother
○ But it takes time…

■ 1 minute/execution
■ 4 executions/system
■ 232 systems, ≈ 15 hours

Questions on experiment results
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● Flawed, but does not impact results
○ Axer et al (ECRTS’13)

○ Flaw pointed by Fonseca et al (SIES’16)

● Scheduling framework
○ Part of the technical framework

○ Not the important contribution/result

● Will be improved with future work

Analysis technique
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