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Abstract
This work addresses the problem of exact schedulability assessment

in uniprocessor mixed-criticality real-time systems with sporadic

task sets. Wemodel the problem bymeans of a finite automaton that

has to be explored in order to check for schedulability. To mitigate

the state explosion problem, we provide a generic algorithm which

is parameterised by several techniques called oracles and simulation

relations. These techniques leverage results from the scheduling

literature as “plug-ins” that make the algorithm more efficient in

practice. Our approach achieves up to a 99.998% reduction in the

search space required for exact schedulability testing, making it

practical for a range of task sets, up to 8 tasks ormaximumperiods of

350. This method enables to challenge the pessimism of an existing

schedulability test and to derive a new dynamic-priority scheduler,

demonstrating its good performance.

CCS Concepts
• Computer systems organization→ Real-time systems.
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1 Introduction
The industry push for integrating systems of varying criticality

levels onto a single platform has driven the real-time community

to develop the mixed-criticality system model, hence producing a

large body of research results for systems designed to degrade grace-

fully [11]. The dual-criticality model enables the concurrent exe-

cution of high-criticality tasks (HI) alongside low-criticality tasks
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(LO). The HI tasks are certified with two estimates of their worst-

case execution time — an optimistic estimate and a pessimistic

upper bound — whereas the LO tasks are less critical and can be

safely disabled should a HI task exceed its optimistic estimate.

Many results about this model have been produced, addressing

variations of the model [7, 17] varying CPU speeds [42, 43], multi-

core and parallel systems [6, 28], and applications in industrial

settings [19, 27, 35]. Despite this progress, however, one fundamen-

tal problem remains open: given a generic scheduling algorithm,

how to assess the schedulability of a mixed-criticality task set?

Agrawal and Baruah proved that determining the schedulability of

independent dual-criticality periodic or sporadic implicit-deadline

tasks is NP-hard in the strong sense [3], hinting that the schedula-

bility assessment of a given scheduling algorithm might be hard as

well. Indeed, to the best of our knowledge, no exact — necessary

and sufficient — schedulability test has been produced to date for a

general scheduling algorithm, even for a uniprocessor platform.

The quest for schedulability tests has produced two main lines of

research. On the one hand, the real-time community has focussed on

efficient tests for specific schedulers, but they are in many cases not

exact. For example, EDF-VD [9], a notable scheduling algorithm for

mixed-criticality systems only provides a sufficient and notoriously

pessimistic test. On the other hand, inspired by the formal methods

community, several works have proposed to model the possible

behaviours of the system by means of an automaton [5] whose

states correspond to all the possible states of the system. In this case,

looking for potential deadline misses can be done by analysing all

the states of the automaton. While such approaches are guaranteed

to provide an exact test [1, 4], they suffer from the state explosion

problem making them impractical for realistic systems.

In this work, we seek to reconcile both approaches. While our

work is rooted in the automaton-based approach, we show how

results and knowledge from the real-time community can be ex-

ploited to make the traversal of automata states more tractable. We

believe that such hybrid techniques are very rare in the literature,

with some notable exceptions like the works of Asyaban [4] (which

addresses mixed criticality in the FTP case) and Ranjha [39]. How-

ever, those papers develop ad hoc techniques (in the cases of FTP

and FJP scheduling), while we strive for more generality.

Our contributions are thus as follows. (1) We provide an au-

tomaton model for systems of dual-criticality sporadic tasks on a

uniprocessor platform where the scheduler is left as a parameter.

Hence, (2) we obtain an exact schedulability test for any given

scheduling algorithm that is deterministic and memoryless. (3) This

test consists in exploring the states of the automaton and is pa-

rameterised by optimisations to leverage knowledge built in the
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Table 1: Comparing with the related work.

[5] [4] [29] Us

Criticality Single Dual Single Dual
Priority classes Any FTP Any Any
Pruning rules ✖ ✔ ✖ ✖

Antichains ✖ ✖ ✔ ✔

Oracles ✖ ✖ ✖ ✔

Multi-processor ✔ ✖ ✔ ✖

real-time community. More precisely, sufficient and necessary tests

can be exploited as oracles that tell the algorithm to avoid exploring

some states. We also exploit a simulation relation between states to

further prune the state space in the spirit of the antichain approach

of the formal method community [14, 15, 21, 45]. (4) We show how

to exploit this generic framework in our setting of mixed critical-

ity by defining proper oracles and a simulation relation. On this

basis, we evaluate empirically our approach. (5) Experiments on

task sets generated randomly according to the model specification

show promising results: the efficiency of our approach enables to

reduce the state search space by up to 99.998%. The genericity of

our approach also allows us (6) to evaluate the EDF-VD scheduling

algorithm and its associated test, showing that the test is pessimistic

w.r.t. its actual scheduling capabilities. (7) For illustration, we study

and present a new dynamic-priority scheduler, LWLF. We demon-

strate its excellent performance, thanks to its anticipation of mode

change impact when operating in LO mode. Table 1 graphically

compares our approach with the closest related work.

Due to space limits, additional oracles and proofs have been

omitted and provided as supplementary material in an extended

version of this article [37].

2 Problem definition
We consider a mixed-criticality sporadic task set 𝜏 = {𝜏1, 𝜏2, . . . , 𝜏𝑛}
with two levels of criticality, also referred to as a dual-criticality [11],

to be scheduled on a uniprocessor platform. A dual-criticality spo-

radic task 𝜏𝑖 = ⟨⟨𝐶𝑖 (LO),𝐶𝑖 (HI)⟩, 𝐷𝑖 ,𝑇𝑖 , 𝐿𝑖 ⟩ is characterised by a

minimum interarrival time 𝑇𝑖 > 0, a relative deadline 𝐷𝑖 > 0, a

criticality level 𝐿𝑖 ∈ {LO,HI} with HI > LO and the worst-case
execution time (WCET) tuple ⟨𝐶𝑖 (LO),𝐶𝑖 (HI)⟩. Tasks will never
execute for more than 𝐶𝑖 (𝐿𝑖 ). Time is assumed to be discrete, ergo

∀𝑖 : 𝑇𝑖 , 𝐷𝑖 ,𝐶𝑖 (LO),𝐶𝑖 (HI) ∈ N \ {0}. I.e., all timing parameters are

strictly-positive integers. It is assumed that𝐶𝑖 (LO) ≤ 𝐶𝑖 (HI) when
𝐿𝑖 = HI and 𝐶𝑖 (HI) = 𝐶𝑖 (LO) when 𝐿𝑖 = LO. A dual-criticality

sporadic task 𝜏𝑖 releases an infinite number of jobs, with each job

release being separated by at least 𝑇𝑖 units of time. The absolute

deadline of jobs are set 𝐷𝑖 units of time after their release, and

jobs must signal completion before their absolute deadline. We

assume jobs are independent, as formulated by Vestal [44]. At each

clock-tick, the executing job can signal its completion. If a job did

not signal completion after exhausting its 𝐶𝑖 (LO), then a mode

change is triggered from LO to HI: jobs of LO tasks are discarded

and LO tasks are not allowed to release jobs any more; active jobs

of HI tasks receive an additional budget of 𝐶𝑖 (HI) −𝐶𝑖 (LO), and

future jobs of HI tasks will receive a budget of 𝐶𝑖 (HI). As a run-
ning example in the work, we define the task set 𝜏𝑎 = {𝜏1, 𝜏2} with
𝜏1 = ⟨⟨1, 2⟩, 2, 2,HI⟩ and 𝜏2 = ⟨⟨1, 1⟩, 2, 2, LO⟩.

It is imperative, when validating a dual-criticality task sets, to

first perform “due diligence” by ensuring the corresponding two

following single-criticality task sets are schedulable: (i) the task set

comprising only HI tasks, where ∀𝜏𝑖 : 𝐶𝑖 = 𝐶𝑖 (HI), and (ii) the task
set including both HI and LO tasks, where ∀𝜏𝑖 : 𝐶𝑖 = 𝐶𝑖 (LO).

We aim to establish an exact schedulability test (necessary and

sufficient) for any dual-criticality sporadic task set 𝜏 that tells us

whether the set is schedulable — i.e., no job released by the tasks

misses a deadline — with a given deterministic and preemptive

scheduling algorithm with dynamic priorities. We support both

implicit (∀𝜏𝑖 : 𝐷𝑖 = 𝑇𝑖 ) and constrained (∀𝜏𝑖 : 𝐷𝑖 ≤ 𝑇𝑖 ) deadlines.

The studied problem is difficult, notably due to two sources of non-

determinism, the first relating to the sporadic model (we do not

know when jobs are released) and the second tomode change (we
do not know when it will occur).

Notations. Assuming 𝛼, 𝛽 ∈ {LO,HI}: the 𝛼-utilisation of the

task 𝜏𝑖 ∈ 𝜏 : 𝑈 𝛼 (𝜏𝑖 ) = 𝐶𝑖 (𝛼)/𝑇𝑖 , the 𝛼-utilisation of the task set 𝜏 :

𝑈 𝛼 (𝜏) = ∑
𝜏𝑖 |𝐿𝑖≥𝛼 𝑈

𝛼 (𝜏𝑖 ), the 𝛼-utilisation of the tasks of criticality
𝛽 in the task set 𝜏 : 𝑈 𝛼

𝛽
(𝜏) = ∑

𝜏𝑖 |𝐿𝑖=𝛽 𝑈
𝛼 (𝜏𝑖 ), and the average

utilisation of the task set 𝜏 : 𝑈 avg (𝜏) = 𝑈 LO (𝜏 )+𝑈 HI (𝜏 )
2

.

3 Automaton based semantic
To obtain a formal definition of the semantics of the system and

of the schedulability problem, we develop an automaton-based

formalism inspired from Baker and Cirinei [5]. An automaton is a

graph whose nodes are called states and whose (directed) edges are

called transitions. States model the states of the system. Changes

from a state to another, triggered by a task, a job, or the scheduler,

are modelled by the transitions. Hence, each path in the automaton

is a possible execution of the system, and we will thus look for

executions that reach states where deadlines are missed (the so-

called failure states) to check whether the system is schedulable or

not. We use the following formal definition of automaton:

Definition 1. An automaton is a tuple 𝐴 = ⟨𝑉 , 𝐸, 𝑣0, 𝐹 ⟩ where
𝑉 is a set of states, 𝐸 ⊆ 𝑉 ×𝑉 is a set of transitions between states,
𝑣0 ∈ 𝑉 is the initial state and 𝐹 ⊆ 𝑉 is a set of failure states. An
automaton is finite iff 𝑉 is a finite set.

The problem we consider on automata is the problem of safety
w.r.t. a designated set of failure states 𝐹 that need to be avoided.

A path in a finite automaton 𝐴 = ⟨𝑉 , 𝐸, 𝑣0, 𝐹 ⟩ is a finite sequence
of states 𝑣1, 𝑣2, . . . , 𝑣𝑘 such that ∀ 1 ≤ 𝑗 < 𝑘 : (𝑣 𝑗 , 𝑣 𝑗+1) ∈ 𝐸. For

a subset of states 𝑉 ′ ⊆ 𝑉 , if there exists a path 𝑣1, 𝑣2, . . . , 𝑣𝑘 in 𝐴

such that 𝑣𝑘 ∈ 𝑉 ′, we say that 𝑣1 can reach 𝑉 ′. We denote the

set of states that can be reached from a state 𝑣 ∈ 𝑉 by Reach (𝑣).
Then, the safety problem asks, given an automaton 𝐴, whether the

initial state 𝑣0 cannot reach the set of failure states 𝐹 — i.e., there

is no path from 𝑣0 to any state 𝑣 ∈ 𝐹 in the automaton, denoted

by Reach (𝑣0) ∩ 𝐹 = ∅. If this is the case, we say that 𝐴 is safe,
otherwise (when 𝑣0 can reach 𝐹 ) we say it is unsafe.

Let 𝜏 = {𝜏1, 𝜏2, . . . , 𝜏𝑛} be a task set as defined in section 2. We

model the behaviour of 𝜏 by means of an automaton 𝐴, and we

reduce the schedulability problem of 𝜏 to an instance of the safety
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problem in 𝐴. A state captures the following dynamic (or “run-

time”) information about each task 𝜏𝑖 : (i) the earliest next arrival
time nat(𝜏𝑖 ) relative to the current instant, and (ii) the worst-case re-
maining execution time rct(𝜏𝑖 ) of the current job of 𝜏𝑖 for the current
level of criticality. In addition, we need to remember the current

global criticality level (or mode) cri ∈ {LO,HI} of the system. Hence,

each system state will be a tuple of the form ⟨rct𝑆 , nat𝑆 , cri𝑆 ⟩:

Definition 2 (System states). Let 𝜏 = {𝜏1, 𝜏2, . . . , 𝜏𝑛} be a
mixed-criticality sporadic task system. Let𝑇max = max𝑖𝑇𝑖 and𝐶max =

max𝑖𝐶𝑖 (𝐿𝑖 ). A system state of 𝜏 is a tuple 𝑆 = ⟨rct𝑆 , nat𝑆 , cri𝑆 ⟩
where: nat𝑆 : 𝜏 ↦→ {0, 1, . . . ,𝑇max} associates each task 𝜏𝑖 to the
minimal delay nat𝑆 (𝜏𝑖 ) that must elapse before the next job of the
task can be released; rct𝑆 : 𝜏 ↦→ {0, 1, . . . ,𝐶max} associates each task
𝜏𝑖 to its maximal remaining execution time rct𝑆 (𝜏𝑖 ) for the current
criticality of the system; and cri𝑆 ∈ {LO,HI} is the current criticality
of the system. We denote by States (𝜏) the set of all system states of 𝜏 .

Intuitively, each state contains the current run-time information

of the systems at a particular instant, i.e., how far we are in the

execution of the active jobs (with the rct𝑆 (𝜏) values) and how close

we are to the next releases of jobs (with the nat𝑆 (𝜏) values). From
these definitions, we derive other useful definitions in the follow-

ing. Notice that the symbols ∧, ∨ and ¬ respectively denote the

conjunction, inclusive disjunction and negation logical operators.

Definition 3 (Time to deadline). Let ttd𝑆 (𝜏𝑖 ) = nat𝑆 (𝜏𝑖 ) −
(𝑇𝑖 − 𝐷𝑖 ) be the time to deadline, the time remaining before the
absolute deadline of the last submitted job [5] of 𝜏𝑖 ∈ 𝜏 in state 𝑆 .
Note that when deadlines are implicit, we have ttd𝑆 (𝜏𝑖 ) = nat𝑆 (𝜏𝑖 ).

Definition 4 (Active tasks). A task 𝜏𝑖 is active in a state 𝑆 iff
it currently has a job that is not completed in 𝑆 . The set of active tasks
in 𝑆 is Active (𝑆) = {𝜏𝑖 | rct𝑆 (𝜏𝑖 ) > 0}.

Definition 5 (Eligible task). A task 𝜏𝑖 is eligible in the state
𝑆 = ⟨rct𝑆 , nat𝑆 , cri𝑆 ⟩ iff it can release a job in this state — i.e., the
task does not currently have an active job, the last job was submitted
at least 𝑇𝑖 time units ago and its criticality is greater than or equal
to the state’s. The set of eligible tasks in 𝑆 is: Eligible (𝑆) = {𝜏𝑖 |
rct𝑆 (𝜏𝑖 ) = nat𝑆 (𝜏𝑖 ) = 0 ∧ 𝐿𝑖 ≥ cri𝑆 }.

Definition 6 (Implicitly completed task). A task 𝜏𝑖 is im-
plicitly completed in the state 𝑆 = ⟨rct𝑆 , nat𝑆 , cri𝑆 ⟩ iff its latest
job has been executed for its maximal execution time. The set of im-
plicitly completed tasks in 𝑆 is Completed (𝑆) = {𝜏𝑖 | rct𝑆 (𝜏𝑖 ) =
0 ∧𝐶𝑖 (cri𝑆 ) = 𝐶𝑖 (𝐿𝑖 )}.

Note that 𝐶𝑖 (cri𝑆 ) = 𝐶𝑖 (𝐿𝑖 ) represents the condition “its lat-

est job has been executed for its maximal execution time”. The

condition cri𝑆 = 𝐿𝑖 is not appropriate because it is possible for a

HI-critical job to have the same execution time in LO andHI. There-
fore, when 𝐶𝑖 (LO) = 𝐶𝑖 (HI), rct𝑆 (𝜏𝑖 ) = 0 and cri𝑆 = LO then 𝜏𝑖 is

implicitly completed because𝐶𝑖 (cri𝑆 ) = 𝐶𝑖 (LO) = 𝐶𝑖 (𝐿𝑖 ) = 𝐶𝑖 (HI)
even if cri𝑆 = LO ≠ 𝐿𝑖 = HI.

Definition 7 (Deadline-miss state). A state 𝑆 is a deadline-
miss state if at least one task’s job reached its deadline without
executing all its maximal execution time. The set of deadline-miss
states on 𝜏 is DeadlineMiss(𝜏) = {𝑆 | ∃𝜏𝑖 ∈ 𝜏 : rct𝑆 (𝜏𝑖 ) > 0 ∧
ttd𝑆 (𝜏𝑖 ) ≤ 0}.

Definition 8 (Scheduler). A uniprocessor memoryless sched-
uler for 𝜏 is a function sch : States (𝜏) ↦→ 𝜏 ∪ {⊥} s.t. sch(𝑆) ∈
Active (𝑆) or sch(𝑆) = ⊥ when no task is to be scheduled. More-
over, we say that the scheduler sch is deterministic, iff for all
𝑆1, 𝑆2 ∈ States (𝜏) s.t. Active (𝑆1) = Active (𝑆2) and cri𝑆1 = cri𝑆2 ,
for all 𝜏𝑖 ∈ Active (𝑆1) : nat𝑆1 (𝜏𝑖 ) = nat𝑆2 (𝜏𝑖 )∧rct𝑆1 (𝜏𝑖 ) = rct𝑆2 (𝜏𝑖 )
implies sch(𝑆1) = sch(𝑆2).

Amemoryless scheduler is a scheduler that makes decisions based

only on the current state, and not on the history of previous states.

The deterministic property means that the scheduler always takes

the same decision given the same criticality level and the same

active task characteristics. It implies that the decisions of a de-

terministic scheduler do not involve any randomness in the job

selection and are unaffected by the inactive tasks. In this work, we

will only consider deterministic memoryless schedulers. As an ex-

ample, we define the EDF-VD scheduler [9] within our framework:

Definition 9 (EDF-VD scheduler). With 𝜆 =
𝑈 LO
HI (𝜏 )

1−𝑈 LO
LO (𝜏 )

a dis-

count factor, let ttvd𝑆 (𝜏𝑖 ) be the time remaining before the virtual
deadline of the last submitted job of 𝜏𝑖 ∈ Active (𝑆) in state 𝑆 defined
as follows:

ttvd𝑆 (𝜏𝑖 ) =
{

nat𝑆 (𝜏𝑖 ) − (𝑇𝑖 − 𝐷𝑖 · 𝜆) if 𝐿𝑖 = HI
ttd𝑆 (𝜏𝑖 ) otherwise.

Further, we let mind (𝑆) be the task 𝜏𝑖 ∈ Active (𝑆) which has the
minimal deadline in 𝑆 . That is, 𝜏𝑖 is s.t. for all 𝜏𝑘 ∈ Active (𝑆) \ {𝜏𝑖 }:
ttd𝑆 (𝜏𝑘 ) > ttd𝑆 (𝜏𝑖 ) or ttd𝑆 (𝜏𝑘 ) = ttd𝑆 (𝜏𝑖 ) ∧ 𝑘 > 𝑖 . We define
minvd (𝑆) similarly, using virtual deadlines instead of deadlines (sub-
stituting ttvd𝑆 for ttd𝑆 in the definition). Then, for all states 𝑆 , we let:
schEDF-VD (𝑆)

=


⊥ if Active (𝑆) = ∅
mind (𝑆) else if cri𝑆 = HI ∨𝑈 LO

LO (𝜏) +𝑈
HI
HI (𝜏) ≤ 1

minvd (𝑆) otherwise.

In the two first cases, the scheduler is behaving exactly as EDF.

The original work of EDF-VD [9] assumes implicit deadlines (i.e.,

∀𝜏𝑖 : 𝐷𝑖 = 𝑇𝑖 ). Notice we cannot have 𝜆 > 1 as it wouldmean𝑈 LO >

1, the task set not being schedulable in LO mode, contradicting the

requisites outlined in Section 2 (“due diligence” ).
Thanks to these notions, we can define the transitions of the

automaton. Those transitions must embed all the modifications

happening to the system state within one clock-tick. Each of those

modifications can be seen as an intermediary transition between

two system states, and they happen in the following order: (1)

Release transitions model the release of jobs by sporadic tasks at a

given instant in time, (2) Run transitions model the elapsing of one

time unit, and running the job selected by the scheduler, if any and

(3) Signal transitions model a job signalling, or not, completion, and

a potential resulting mode change.

In the automaton, an actual transition will exist only if those

three intermediary transitions happen one after the other. We now

formally define how each kind of intermediary transitions alter

the state. We start by defining release transitions. Let 𝑆 be a state

in States (𝜏). Intuitively, when the system is in state 𝑆 , a task 𝜏𝑖
releasing a new job has the effect to update 𝑆 by setting nat(𝜏𝑖 ) to
𝑇𝑖 and rct(𝜏𝑖 ) to 𝐶𝑖 (cri𝑆 ). Formally:
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Definition 10 (Release transition). Let 𝑆 = ⟨rct𝑆 , nat𝑆 , cri𝑆 ⟩
∈ States (𝜏) be a system state and 𝜏+ ⊆ Eligible (𝑆) be a set of tasks
that are eligible to release a new job in the system. Then, we say that
𝑆+ = ⟨rct𝑆+ , nat𝑆+ , cri𝑆+ ⟩ is a 𝜏+-release successor of 𝑆 , denoted

𝑆
𝜏+−−→rl 𝑆

+ iff:

(1) ∀𝜏𝑖 ∈ 𝜏+ : nat𝑆+ (𝜏𝑖 ) = 𝑇𝑖 and rct𝑆+ (𝜏𝑖 ) = 𝐶𝑖 (cri𝑆 )
(2) ∀𝜏𝑖 ∉ 𝜏+ : nat𝑆+ (𝜏𝑖 ) = nat𝑆 (𝜏𝑖 ) and rct𝑆+ (𝜏𝑖 ) = rct𝑆 (𝜏𝑖 )
(3) cri𝑆+ = cri𝑆 .

Notice that we allow 𝜏+ = ∅, that is, no task releases a new job

in the system. Also note that no time elapsed in that transition,

so no nat(𝜏𝑖 ) nor rct(𝜏𝑖 ) must be updated. Furthermore, observe

that changing the definition with 𝜏+ = Eligible (𝑆) would lead to

consider a periodic task model (without offset), as all tasks that

could release a job would then have to release it immediately. Next,

we move to run transitions. Let 𝑆 be a state in States (𝜏), and let

run be the scheduling decision to apply, i.e., either run ∈ 𝜏 and

run must be executed or run = ⊥ and the processor remains idle.

Then, letting one time unit elapse from 𝑆 under the run scheduling

decision leads to decrementing the rct of the task run (and only this

task) if run ∈ 𝜏 , and to decrementing the nat of all tasks. Formally:

Definition 11 (Run transition). Let 𝑆 = ⟨rct𝑆 , nat𝑆 , cri𝑆 ⟩ ∈
States (𝜏) be a system state and run ∈ 𝜏 ∪ {⊥} be a task to be
executed or ⊥ if no task is to be executed. Then, we say that 𝑆 ′ =
⟨rct𝑆 ′ , nat𝑆 ′ , cri𝑆 ′ ⟩ is a run successor of 𝑆 under run, denoted by
𝑆

run−−−→rn 𝑆 ′ iff:

(1) For all 𝜏 𝑗 ∈ 𝜏 \ {run}: rct𝑆 ′ (𝜏 𝑗 ) = rct𝑆 (𝜏 𝑗 ) and run ≠ ⊥
implies rct𝑆 ′ (run) = rct𝑆 (run) − 1

(2) ∀𝜏𝑖 ∈ 𝜏 : nat𝑆 ′ (𝜏𝑖 ) = max{nat𝑆 (𝜏𝑖 ) − 1, 0}
(3) cri𝑆 ′ = cri𝑆 .

Finally, let us define signal transitions. When the system is in

state 𝑆 ∈ States (𝜏), there are typically two possible scenarios for

the task 𝜏𝑟 which has just been executed: it can signal completion,

or not. We call the combination of this information a setup: 𝑆, 𝜏𝑟 and
whether 𝜏𝑟 signals completion. This non-deterministic behaviour

leads to three different outcomes for the state 𝑆 . Outcome (1) is when

𝑆 does not change at all, which can result from different setups.

Either no task has been executed; or 𝜏𝑟 must signal completion

because it has exhausted all its execution time budget for its worst

criticality mode, i.e. 𝜏𝑟 is implicitly completed; or the task 𝜏𝑟 does

not signal completion without having exhausted all its execution

time budget; or the task 𝜏𝑟 signals completion and has exhausted

all its execution time budget for the current criticality mode, which

is not its worst one. Outcome (2) is when 𝜏𝑟 signals completion

with remaining execution time budget for the current criticality

mode, i.e. 𝜏𝑟 is explicitly completed. Outcome (3) happens when 𝜏𝑟
does not signal completion, has exhausted its execution time budget

for the current criticality mode but still has execution time budget

in the higher (HI) criticality mode, which triggers a mode change.

When a task 𝜏𝑟 signals completion explicitly, then the resulting

state is identical to 𝑆 except for the rct of 𝜏𝑟 , which is set to 0.

Such state is formalised as sigCmp𝑆 (𝜏𝑟 ) where sigCmp𝑆 (𝜏𝑟 ) is the
state 𝑆 ′ s.t. : nat𝑆 = nat𝑆 ′ ; cri𝑆 = cri𝑆 ′ ; rct𝑆 ′ (𝜏𝑟 ) = 0; and, for all

𝜏𝑖 ∈ 𝜏 \ {𝜏𝑟 }: rct𝑆 ′ (𝜏𝑖 ) = rct𝑆 (𝜏𝑖 ). When a mode change occurs, cri
becomes HI and all the active HI-critical tasks see their rct increase

by the difference between their execution time in levels HI and LO.

All LO-critical tasks are discarded, having rct set to 0. The state

obtained from 𝑆 when 𝜏𝑟 triggers a mode change is thus denoted

as critUp𝑆 (𝜏𝑟 ). Hence, critUp𝑆 (𝜏𝑟 ) is formalised as the state 𝑆 ′ s.t.
: nat𝑆 = nat𝑆 ′ ; cri𝑆 ′ = HI; and, for all 𝜏𝑖 ∈ 𝜏 : rct𝑆 ′ (𝜏𝑖 )

=


rct𝑆 (𝜏𝑖 ) +𝐶𝑖 (HI) −𝐶𝑖 (LO) if 𝐿𝑖 = HI ∧ rct𝑆 (𝜏𝑖 ) > 0

𝐶𝑖 (HI) −𝐶𝑖 (LO) else if 𝜏𝑖 = 𝜏𝑟
0 otherwise.

Thanks to these two functions, we can now define formally signal

transitions.

Definition 12 (Signal transition). Let ran ∈ 𝜏 ∪ {⊥} be
the task that has just been executed if any, ⊥ otherwise. Let 𝜃 ∈
{True, False} denote whether ran signals completion explicitly. Then,
we say that 𝑆− = ⟨rct𝑆− , nat𝑆− , cri𝑆− ⟩ is a signal successor of 𝑆

under ran, denoted 𝑆
ran,𝜃−−−−→sg 𝑆

− iff:

𝑆− =



𝑆 if ran ∈ Completed (𝑆) ∪ {⊥}
∨ (¬𝜃 ∧ rct𝑆 (ran) > 0) (1)
∨ (𝜃 ∧ rct𝑆 (ran) = 0)

sigCmp𝑆 (ran) if ran ∉ Completed (𝑆) ∪ {⊥} (2)
∧𝜃 ∧ rct𝑆 (ran) > 0

critUp𝑆 (ran) if ran ∉ Completed (𝑆) ∪ {⊥} (3)
∧¬𝜃 ∧ rct𝑆 (ran) = 0.

The cases’ number match the outcomes previously described.

Note that 𝑆 always has itself has a signal successor. Then, when

ran ∉ Completed (𝑆) ∪ {⊥}, 𝑆 has another signal successor which

is either sigCmp𝑆 (ran) or critUp𝑆 (ran) depending on the setup.

Finally, we define the automaton 𝐴(𝜏, sch) that formalises the

behaviour of the system of dual-criticality sporadic task set 𝜏 , when

executed under a scheduling algorithm sch:

Definition 13. Given a system of dual-criticality sporadic tasks 𝜏
and a scheduler sch, the automaton𝐴(𝜏, sch) is the tuple ⟨𝑉 , 𝐸, 𝑣0, 𝐹 ⟩
where:

(1) 𝑉 = States (𝜏)
(2) (𝑆1, 𝑆2) ∈ 𝐸, iff there are 𝑆+, 𝑆′ ∈ States (𝜏), 𝜏+ ⊆ 𝜏 and 𝜃 ∈

{True, False} s.t.: 𝑆1
𝜏+−−→rl 𝑆

+ sch(𝑆+ )
−−−−−−→rn 𝑆 ′

sch(𝑆+ ),𝜃
−−−−−−−−→sg 𝑆2

(3) 𝑣0 = ⟨rct𝑣0 , nat𝑣0 , cri𝑣0 ⟩ where cri𝑣0 = LO and ∀𝜏𝑖 ∈ 𝜏 :

nat𝑣0 (𝜏𝑖 ) = rct𝑣0 (𝜏𝑖 ) = 0

(4) 𝐹 = DeadlineMiss(𝜏)

As we assumed that sch must be deterministic, run and ran,
equalling both to sch(𝑆+), will be the same, as intended by the

definition of the automaton. Each possible execution of the task

set corresponds to a path in 𝐴(𝜏, sch) and vice versa. States in

DeadlineMiss(𝜏) correspond to states of the system where a dead-

line is or has been missed. Hence, the set of dual-criticality spo-

radic tasks 𝜏 is feasible under scheduler sch iff 𝐴(𝜏, sch) is safe, i.e.,
DeadlineMiss(𝜏) is not reachable in 𝐴(𝜏, sch).

Figure 1 illustrates such an automaton, representing the possible

execution of a task set scheduled with the EDF-VD scheduler. In

this example, the automaton depicts the dual-criticality sporadic

task set 𝜏𝑎 as specified in section 2. System states are represented by

nodes. For the purpose of saving space, we represent a state 𝑆 with
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LO [00,00]

rn(⊥)

LO [12,00]

rl({𝜏1})

LO [12,12]

rl({𝜏1,𝜏2})

LO [00,12]

rl({𝜏2})

LO [01,00]

rn(𝝉1)

LO [01,11]

rn(𝜏1)

LO [00,01]

rn(𝜏2)

rn(⊥)

LO [01,12]

rl({𝜏2})

HI [11,00]

sg(𝜏1,False)
critUp

rn(𝜏2)

rn(𝜏2)

HI [11,01]

sg(𝜏1,False)
critUp

rn(⊥)

LO [12,01]

rl({𝜏1})

HI [00,00]

rn(𝜏1)HI [22,00]

rn(𝜏1)

HI [01,00]

sg(𝜏1,True)
sigCmp

rn(𝜏1)

rn(𝜏1)

rn(⊥)

rl({𝜏1}) rn(⊥)

Figure 1: 𝐴(𝜏𝑎, schEDF-VD) developed automaton with inter-
mediary transitions. Intermediary states have a dashed out-
line, and greyed out states are simulated.

the 𝜒 [𝛼𝛽,𝛾𝛿] format, meaning cri𝑆 = 𝜒 , rct𝑆 (𝜏1) = 𝛼 , nat𝑆 (𝜏1) =
𝛽 , rct𝑆 (𝜏2) = 𝛾 and nat𝑆 (𝜏2) = 𝛿 . We explicitly represent run

transitions by edges labelled with rn, signal transitions by edges

labelled with sg, and release transitions by edges labelled with rl.
The 𝜏+ = ∅ release loops and 𝑆− = 𝑆 signal loops are omitted for

readability. Notice that the graph in Figure 1 is a developed way

of representing 𝐴(𝜏𝑎, schEDF-VD) as it is built with intermediary

transitions.

We can observe different behaviour from the system. Theremight

be several release transitions from a single state, as it can be seen

from the initial node LO[00, 00]. Indeed, four combinations of re-

leases are possible. When 𝜏+ = ∅, there is a release transition from

the state to itself, which is omitted on the figure. The signal tran-

sition from the state LO[01, 11] contains a mode change which

leads to aHI-criticality system state and the LO-criticality task 𝜏2 is

discarded. Finally, in the signal transition from the state HI[11, 00],
the task 𝜏1 signals completion explicitly before exhausting all its

execution time budget 𝐶𝑖 (HI) = 2, and its rct is set to 0. Per the

automaton definition, a signal transition exists only when it is pre-

ceded by a run transition, emanating from HI[22, 00] in this case.

Thus, the first time that the state HI[11, 00] was visited via a signal

transition from LO[01, 00], the signal transition to HI[01, 00] was
not yet generated.

4 An efficient algorithm for safety with
simulation relation and oracles

In this section, we present an efficient algorithm to check for safety

in an automaton, which is based on two hypothesis: (i) we can

query an oracle which can sometimes tell us whether a given state

can or cannot reach the set of failure states 𝐹 ; (ii) we have at our
disposal a simulation relation between states. Intuitively, when 𝑣 ′

simulates 𝑣 , it means that all paths that can occur from 𝑣 can be

witnessed by a path from 𝑣 ′. In particular, when 𝑣 can reach the

failure states, then 𝑣 ′ can reach them too.

Both the oracle and the simulation relation can improve the per-

formance of an algorithm answering the safety problem. Whenever

the oracle guarantees that 𝑣 cannot reach the failure states, there is

no need to compute the paths starting in 𝑣 (and it is safe to do so, as

no path to the failure states will be dropped). When the oracle says

that a state 𝑣 (that is reachable from 𝑣0) can reach the failure states

𝐹 , we can immediately conclude that 𝐹 is reachable from 𝑣0 as well,

hence that the automaton is unsafe. Finally, when two reachable

states 𝑣 and 𝑣 ′ are found s.t. 𝑣 ′ simulates 𝑣 , only the paths starting

from 𝑣 ′ need to be computed.

We show in section 5 how such an oracle and such a simulation

relation can be derived in our mixed criticality setting, but the

generality of the concepts we explain here make them applicable

to other scheduling problems. We formalise the notion of oracle:

Definition 14 (Safe and unsafe states). Let 𝐴 = ⟨𝑉 , 𝐸, 𝑣0, 𝐹 ⟩
be a finite automaton. Then, a state 𝑣 is safe iff there is no path
starting in 𝑣 that reaches 𝐹 , i.e., Reach (𝑣) ∩ 𝐹 = ∅.

A state 𝑣 that is not safe (i.e., there is a path from 𝑣 that reaches 𝐹 )
is called unsafe.

In order to formalise the oracle, we assume that we have at

our disposal a set Safe containing only safe states and a set Unsafe
containing only unsafe states.Without loss of generality, we assume

that 𝐹 ⊆ Unsafe. Observe that we can have Safe = ∅ andUnsafe = 𝐹 ,

so we do not request that Safe ∪ Unsafe = 𝑉 . However, the bigger

those sets, the more efficient our algorithm will potentially be. Next,

we define the notion of simulation relation.

Definition 15 (Simulation relation). Let 𝐴 = ⟨𝑉 , 𝐸, 𝑣0, 𝐹 ⟩ be
a finite automaton. A relation ≼⊆ 𝑉 ×𝑉 is a simulation relation
iff it respects the following properties:

(1) ≼ is a preorder, i.e., it is reflexive and transitive.
(2) for all states 𝑣1 and 𝑣 ′

1
s.t. 𝑣1 ≼ 𝑣 ′

1
, for all 𝑣2 s.t. (𝑣1, 𝑣2) ∈ 𝐸,

there exists 𝑣 ′
2
∈ 𝑉 s.t.: (i) (𝑣 ′

1
, 𝑣 ′

2
) ∈ 𝐸; (ii) and 𝑣2 ≼ 𝑣 ′

2
.

(3) for all states 𝑣 and 𝑣 ′ s.t. 𝑣 ≼ 𝑣 ′: 𝑣 ∈ 𝐹 implies that 𝑣 ′ ∈ 𝐹 .

Whenever 𝑣1 ≼ 𝑣 ′
1
, we say that 𝑣 ′

1
simulates 𝑣1. Thus, the def-

inition says that, for every move (𝑣1, 𝑣2) that can be performed

from 𝑣1, there is a matching move (𝑣 ′
1
, 𝑣 ′

2
) from 𝑣 ′

1
. Here, ‘matching’

means that the state 𝑣 ′
2
simulates 𝑣2 (𝑣2 ≼ 𝑣 ′

2
) and that 𝑣 ′

2
is a failure

state if 𝑣2 is. From this definition, we establish the following:

Proposition 1. Let 𝐴 = ⟨𝑉 , 𝐸, 𝑣0, 𝐹 ⟩ be a finite automaton. For
all pairs of states 𝑣 and 𝑣 ′ s.t. 𝑣 ≼ 𝑣 ′, the following holds: (1) if 𝑣 is
unsafe, then 𝑣 ′ is unsafe too; (2) if 𝑣 ′ is safe, then 𝑣 is safe too.

This observation prompts for the definition of the set of ‘all

states that are simulated by/simulate a given state 𝑣 ’. Given a state

𝑣 and a simulation relation ≼, we let the upward-closure of 𝑣 be the
set of all states that simulate 𝑣 , i.e., ↑≼ (𝑣) = {𝑣 ′ | 𝑣 ≼ 𝑣 ′}; and its

downward-closure be ↓≼(𝑣) = {𝑣 ′ | 𝑣 ′ ≼ 𝑣} (the set of all states that
are simulated by 𝑣). The upward and downward-closures are also

defined on a set of states, for which it becomes the union of the

respective closures of all the states within the set. Finally, given a

set of states 𝑌 ⊆ 𝑉 , we let max≼ (𝑌 ) = {𝑣 ∈ 𝑆 | �𝑣 ′ ∈ 𝑆 : 𝑣 ≼ 𝑣 ′}
be the set of maximal states of 𝑆 w.r.t. the simulation ≼, i.e., those
states in 𝑆 that are not simulated by any other state in 𝑆 .
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Let us now explain how these notions (sets of safe and unsafe

states, and simulation relation) can be exploited in a generic algo-

rithm to solve the safety problem in a finite automaton. First, let us

recall the general strategy of breadth first search to solve safety in

an automaton. It can be formalised as computing two sequences

of sets (𝑅𝑖 )𝑖≥0 and (𝑁𝑖 )𝑖≥0 s.t., for all 𝑖 ≥ 0, 𝑅𝑖 and 𝑁𝑖 are the sets

of all states that can be reached from 𝑣0 in at most 𝑖 steps and ex-

actly 𝑖 steps, respectively. We denote by Succ (𝑌 ) = {𝑣 ′ |∃(𝑣, 𝑣 ′) ∈
𝐸 ∀𝑣 ∈ 𝑌 } the set of all successors of all states in 𝑌 ⊆ 𝑉 , and we

have 𝑁0 = {𝑣0}, ∀𝑖 ≥ 0 : 𝑁𝑖+1 = Succ (𝑁𝑖 ) \ 𝑅𝑖 , 𝑅0 = {𝑣0}, and
∀𝑖 ≥ 0 : 𝑅𝑖+1 = 𝑅𝑖 ∪𝑁𝑖+1. Then, an algorithm to decide reachability

consists in computing 𝑁1, 𝑅1, 𝑁2, 𝑅2, . . . 𝑁 𝑗 , 𝑅 𝑗 , . . . until: (i) either
𝑁 𝑗 ∩ 𝐹 ≠ ∅, in which case 𝐹 is reachable from 𝑣0; or (ii) 𝑅 𝑗 = 𝑅 𝑗+1,
in which case 𝑅 𝑗 contains all the reachable states and we know

that 𝐹 is not reachable (otherwise, we would have already returned

‘fail’). In order to improve this algorithm, we compute the sequences(
𝑅𝑖

)
𝑖≥0

and

(
𝑁𝑖

)
𝑖≥0

:

𝑁0 = 𝑅0 ={𝑣0}\ ↓≼(Safe)

∀𝑖 ≥ 0 : 𝑁𝑖+1 =max≼
(
Succ

(
𝑁𝑖

)
\ ↓≼

(
𝑅𝑖 ∪ Safe

))
∀𝑖 ≥ 0 : 𝑅𝑖+1 =max≼

(
𝑅𝑖 ∪ 𝑁𝑖+1

)
.

Intuitively, these sequences contain less elements than the origi-

nal ones, but still retain enough information to solve the safety prob-

lem. Let us explain why. Assume the algorithm has computed set

𝑅𝑖 and 𝑁𝑖 , and let us consider how it computes 𝑁𝑖+1. First, the algo-

rithm computes the successors of𝑁𝑖 , then computes Succ
(
𝑁𝑖

)
\ ↓≼(

𝑅𝑖 ∪ Safe
)
, i.e. it removes, from the successors of 𝑁𝑖 , all the ele-

ments that are simulated by an element from𝑅𝑖 or from Safe. Finally,
it keeps only the maximal elements from this resulting set.

To understand why these optimisations are correct, assume there

is a state 𝑣 ∈ Succ
(
𝑁𝑖

)
which is also simulated by an element

of Safe (hence 𝑣 ∈↓≼ (Safe)). With our optimisations, 𝑣 is not in

𝑁𝑖+1, and its successors will not be computed at the next step.

However, this is not a problem, because 𝑣 is simulated by a safe

state, hence it is safe too by Proposition 1. Similarly, if 𝑣 ∈↓≼
(
𝑅𝑖

)
,

it means we have already computed all the necessary successors

at a previous step, keeping only those that are potentially unsafe.

So, it is correct to avoid computing the successors of 𝑣 , since we

are looking for paths that lead to unsafe states. Now, assume that

there is 𝑣 ∈ Succ
(
𝑁𝑖

)
\ ↓≼

(
𝑅𝑖 ∪ Safe

)
which is not ≼-maximal.

This implies that there is 𝑣 ′ ∈ 𝑁𝑖+1 that simulates 𝑣 . There are two

possibilities. Either 𝑣 is safe, and we do not need to compute its

successors. Or 𝑣 is unsafe, but then, so is 𝑣 ′. So, again, we keep in

𝑁𝑖+1 enough information to discover a path to the failure states.

With these definitions, all sets 𝑅𝑖 and 𝑁𝑖 are ≼-antichains of ≼-
maximal states (i.e., sets of states which are all incomparable and

maximal w.r.t. ≼) that retain enough information to find paths to 𝐹 .

Based on these sequences, we propose Algorithm 1 to check for

safety in a given finite automaton 𝐴 = ⟨𝑉 , 𝐸, 𝑣0, 𝐹 ⟩, when we have

at our disposal a simulation relation ≼ on 𝑉 , and two sets Safe and
Unsafe ⊇ 𝐹 of safe and unsafe states respectively, provided to us by

an Oracle. This algorithm consists in computing 𝑁0, 𝑅0, 𝑁1, 𝑅1, . . .

until either (i) 𝑁𝑖∩ ↑≼(Unsafe) ≠ ∅, in which case we know that 𝐹

is reachable; or (ii) 𝑁𝑖 = ∅, in which case we have explored enough

states to guarantee that 𝐹 is not reachable.

Algorithm 1 Antichain breadth first search with safe and unsafe

states optimisation

1: 𝑖 ← 0

2: 𝑅0 ← {𝑣0}\ ↓≼(Safe)
3: 𝑁0 ← {𝑣0}\ ↓≼(Safe)
4: repeat
5: if 𝑁𝑖∩ ↑≼(Unsafe) ≠ ∅ then
6: return Fail
7: end if
8: 𝑁𝑖+1 ← max≼

(
Succ

(
𝑁𝑖

)
\ ↓≼

(
𝑅𝑖 ∪ Safe

))
9: 𝑅𝑖+1 ← max≼

(
𝑅𝑖 ∪ 𝑁𝑖+1

)
10: 𝑖 ← 𝑖 + 1
11: until 𝑁𝑖 = ∅
12: return Safe

Proposition 2. On all automata 𝐴, Algorithm 1 terminates and
returns ‘Fail’ iff 𝐴 is unsafe.

Proof Sketch. We first establish termination by showing that

all states computed in some 𝑅𝑖 are reachable states, i.e., 𝑅𝑖 ⊆
Reach (𝐴) for all 𝑖 ≥ 0. We then observe that the sets ↓≼

(
𝑅𝑖

)
keep growing, i.e., ↓≼

(
𝑅0

)
⊆↓≼

(
𝑅1

)
⊆ · · · ⊆↓≼

(
𝑅𝑖

)
⊆ · · · .

However, since ↓≼
(
𝑅𝑖

)
⊆↓≼ (Reach (𝐴)) for all 𝑖 ≥ 0, and since

↓≼(Reach (𝐴)) is a finite set, this sequencemust eventually stabilise,

i.e., ↓≼
(
𝑅ℓ

)
=↓≼

(
𝑅ℓ+1

)
for some ℓ . From this, we can conclude that

𝑁ℓ+1 = ∅ and the algorithm terminates.

Next, we prove soundness, i.e., when the algorithm returns

‘Fail’, we have indeed Reach (𝐴) ∩ 𝐹 ≠ ∅. This stems again from

the fact that 𝑁𝑖 ⊆ Reach (𝐴) for all 𝑖 ≥ 0. Hence, when we return

‘Fail’, we have indeed found a reachable state that is unsafe.

Finally, we establish completeness, i.e., when Reach (𝐴) ∩ 𝐹 ≠ ∅,
the algorithm returns ‘Fail’. To obtain this result, we consider one

path 𝑣0, 𝑣1, . . . , 𝑣𝑘 , 𝑣𝑘+1 s.t., 𝑣𝑘+1 ∈↑≼(Unsafe), and 𝑣𝑖 ∉↑≼(Unsafe)
for all 0 ≤ 𝑖 ≤ 𝑘 . That is, the path reaches ↑≼(Unsafe) in its last state
only. We show that the prefix 𝑣0, 𝑣1, . . . , 𝑣𝑘 can be ‘found’ in the

sequence 𝑅0, . . . , 𝑅𝑘 in the following sense: 0 ≤ 𝑖 ≤ 𝑘 : 𝑣𝑖 ∈↓≼
(
𝑅𝑖

)
.

From that, we conclude that 𝑁𝑘+1∩ ↑≼(Unsafe) ≠ ∅, and that 𝑁𝑘+1
will be computed by the algorithm, hence returning ‘Fail’. □

5 A simulation relation and oracles for
dual-criticality scheduling

In order to leverage the optimised algorithm of section 4 on the

automaton defined in section 3 (to model the behaviour of dual-

criticality task set), we define in this Section a suitable simulation

relation and ad hoc oracles. In section 6, we will show that these

optimisations are efficient in practice to reduce the size of the state

space that needs to be explored.
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5.1 Idle tasks simulation relation
We first define a simulation relation ≼𝑖𝑑𝑙𝑒 , called the idle tasks
simulation relation that can be computed efficiently by inspecting

the values nat, rct and cri stored in the states.

Definition 16. Let 𝜏 be a set of dual-criticality sporadic tasks.
Then, the idle tasks preorder ≼𝑖𝑑𝑙𝑒⊆ States (𝜏) × States (𝜏) is s.t.
for all 𝑆1, 𝑆2 : 𝑆1 ≼𝑖𝑑𝑙𝑒 𝑆2 iff: (i) cri𝑆2 = cri𝑆1 ; (ii) rct𝑆2 = rct𝑆1 ; (iii)
for all 𝜏𝑖 s.t. rct𝑆1 (𝜏𝑖 ) = 0 : nat𝑆2 (𝜏𝑖 ) ≤ nat𝑆1 (𝜏𝑖 ); and (iv) for all 𝜏𝑖
s.t. rct𝑆1 (𝜏𝑖 ) > 0 : nat𝑆2 (𝜏𝑖 ) = nat𝑆1 (𝜏𝑖 ).

This relation is transitive and reflexive, so it is indeed a preorder.

The relation also defines a partial order on Active (𝑆), because it
is antisymmetric. Note that 𝑆1 ≼𝑖𝑑𝑙𝑒 𝑆2 implies that Active (𝑆2) =
Active (𝑆1) since rct𝑆2 = rct𝑆1 . We show that this preorder is indeed

a simulation relation for a deterministic scheduler:

Theorem 1. Let 𝜏 be a dual-criticality sporadic task system and
sch a deterministic uniprocessor scheduler for 𝜏 . Then ≼𝑖𝑑𝑙𝑒 is a sim-
ulation relation for 𝐴(𝜏, sch).

Proof Sketch. Let 𝑆1, 𝑆
−
1
and 𝑆2 be three states in States (𝜏)

s.t. (𝑆1, 𝑆−
1
) ∈ 𝐸 and 𝑆1 ≼𝑖𝑑𝑙𝑒 𝑆2, let us show that there exists

𝑆−
2
∈ States (𝜏) with (𝑆2, 𝑆−

2
) ∈ 𝐸 and 𝑆−

1
≼𝑖𝑑𝑙𝑒 𝑆

−
2
.

Let 𝑆+
1
and 𝑆 ′

1
∈ States (𝜏), 𝜏+ ⊆ 𝜏 and 𝜃 ∈ {True, False} be such

that : 𝑆1
𝜏+−−→rl 𝑆

+
1

sch(𝑆+
1
)

−−−−−−→rn 𝑆 ′
1

sch(𝑆+
1
),𝜃

−−−−−−−−→sg 𝑆−
1
. Those exist by

Definition 13 and since (𝑆1, 𝑆−
1
) ∈ 𝐸.

First, observe that, by Definition 16, Eligible (𝑆1) ⊆ Eligible (𝑆2).
So, by Definition 10, there exists a 𝜏+-release transition from 𝑆2.

Let 𝑆+
2
be the state s.t. 𝑆2

𝜏+−−→rl 𝑆
+
2
. By Definition 10, again, it is easy

to check that 𝑆+
1
≼𝑖𝑑𝑙𝑒 𝑆

+
2
.

Next, let us show that we can simulate the run transition from

𝑆+
2
. To alleviate notations, let us denote, from now on, sch(𝑆+

1
) by

run1 and sch(𝑆+
2
) by run2. Since the scheduler is deterministic, we

have run1 = run2, by Definition 8. Hence, we can let 𝑆 ′
2
be the state

s.t. 𝑆+
2

run2−−−−→rn 𝑆 ′
2
. Finally, by Definition 16 and 8, it is easy to check

that 𝑆 ′
1
≼𝑖𝑑𝑙𝑒 𝑆

′
2
.

Then, let us show that we can simulate the signal transitions

from 𝑆 ′
1
. Let 𝑆−

2
be the state s.t. 𝑆 ′

2

run2,𝜃−−−−−→sg 𝑆
−
2
and let us observe

𝑆−
1
. By Definition 12, there are three possible values for 𝑆−

1
which

are all simulated by 𝑆−
2
. Indeed, keeping in mind that, run1 = run2,

𝑆 ′
1
≼𝑖𝑑𝑙𝑒 𝑆 ′

2
is already established. Then, it is easy to verify that

sigCmp𝑆 ′
1

(run1) ≼𝑖𝑑𝑙𝑒 sigCmp𝑆 ′
2

(run2) and critUp𝑆 ′
1

(run1) ≼𝑖𝑑𝑙𝑒
critUp𝑆 ′

2

(run2).
It remains to prove that if 𝑆1 ≼𝑖𝑑𝑙𝑒 𝑆2 and 𝑆1 ∈ DeadlineMiss(𝜏),

then 𝑆2 ∈ DeadlineMiss(𝜏) too. Let 𝜏𝑖 be such that rct𝑆1 (𝜏𝑖 ) >

0 ∧ ttd𝑆1 (𝜏𝑖 ) ≤ 0. Since 𝑆1 ≼𝑖𝑑𝑙𝑒 𝑆2 : rct𝑆2 (𝜏𝑖 ) = rct𝑆1 (𝜏𝑖 ) and
nat𝑆2 (𝜏𝑖 ) ≤ nat𝑆1 (𝜏𝑖 ), thus ttd𝑆2 (𝜏𝑖 ) ≤ ttd𝑆1 (𝜏𝑖 ). Hence rct𝑆2 (𝜏𝑖 ) >
0 ∧ ttd𝑆2 (𝜏𝑖 ) ≤ ttd𝑆1 (𝜏𝑖 ) ≤ 0 and therefore 𝑆2 ∈ DeadlineMiss(𝜏)
as per Definition 7. □

Figure 1, presented in section 3, illustrates the effect of ≼𝑖𝑑𝑙𝑒
with Algorithm 1. If a state 𝑆2 has been encountered previously,

and we find another state 𝑆1 s.t. 𝑆1 ≼𝑖𝑑𝑙𝑒 𝑆2, then we can avoid

exploring 𝑆1 and its successors. However, this does not mean never

encountering a successor of 𝑆1 as they may be encountered through

other paths, or have been encountered already. In Figure 1, grey

states can be avoided as they are simulated by another state: we

haveHI[01, 00] ≼𝑖𝑑𝑙𝑒 HI[00, 00] and, LO[00, 01] and LO[01, 00] are
simulated by LO[00, 00].

5.2 Safe state oracles
We present a safe state oracle, which is a sufficient schedulability

condition depending on the state of the system.

Oracle 1. HI idle point.

{𝑆 | cri𝑆 = HI ∧ Active (𝑆) = ∅} ⊆ Safe.

Proof. As per the “due diligence” outlined in section 2, the task

set comprising only HI tasks, where ∀𝜏𝑖 : 𝐶𝑖 = 𝐶𝑖 (HI), must be

schedulable. Hence, as of reaching an idle point in HI mode, no

more deadline misses are possible. □

5.3 Unsafe state oracles
In this section, we present several necessary conditions depending

on the states of the system and provide their equivalent formulation

in terms of unsafe oracles. Note that the oracles presented below

are scheduler-agnostic.

Definition 17 (Laxity). The laxity of an active task 𝜏𝑖 in the
state 𝑆 is: laxity𝑆 (𝜏𝑖 ) = ttd𝑆 (𝜏𝑖 ) − rct𝑆 (𝜏𝑖 ).

Lemma 1. For feasibility it is necessary to have ∀𝜏𝑖 ∈ Active (𝜏) :
laxity𝑆 (𝜏𝑖 ) ≥ 0.

Proof. It is obvious that if ttd𝑆 (𝜏𝑖 ) < rct𝑆 (𝜏𝑖 ), then even if the

processor is given to the job immediately until its deadline, we will

miss its deadline. □

Oracle 2. Negative laxity.

{𝑆 | ∃𝜏𝑖 ∈ Active (𝜏) : laxity𝑆 (𝜏𝑖 ) < 0} ⊆ Unsafe.

Proof. It holds trivially from Lemma 1 that any state 𝑆 violating

the necessary condition will lead to a deadline miss. □

In LOmode, we introduce a stronger condition that anticipates an
imminent mode change. The worst-laxity of a LO task is simply its

laxity. However, for a HI task, we incorporate its “bonus” execution
time (𝐶𝑖 (HI)−𝐶𝑖 (LO)) that would be incurred if it does not explicitly
signal completion, eventually causing a mode change.

Definition 18 (Worst-laxity). The worst-laxity of an active
task 𝜏𝑖 in state 𝑆 is: worstLaxity𝑆 (𝜏𝑖 ) = laxity𝑆 (𝜏𝑖 ) − (𝐶𝑖 (𝐿𝑖 ) −
𝐶𝑖 (cri𝑆 )).

Lemma 2. ∀𝜏𝑖 , it is necessary to have worstLaxity𝑆 (𝜏𝑖 ) ≥ 0.

Proof. InHImode the laxity is equivalent to the notion of worst-

laxity, the property follows from Lemma 1. In LO mode we have to

distinguish between LO and HI tasks. For a LO task it is necessary

to have non negative laxity. For a HI task if this condition is not

satisfied and if a mode change occurs simultaneously, by definition

the remaining computation time of the active job of 𝜏𝑖 is larger than

the time we have before reaching the deadline. Therefore, we will

inevitably miss the task deadline, which proves the property. □

Oracle 3. Negative worst-laxity.

{𝑆 | ∃𝜏𝑖 ∈ Active (𝜏) : worstLaxity𝑆 (𝜏𝑖 ) < 0} ⊆ Unsafe.
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Proof. It holds trivially from Lemma 2 that any state 𝑆 violating

the necessary condition will lead to a deadline miss. □

For the next oracle, we propose to adapt the reasoning of demand

bound functions (dbf) — as leveraged for EDF and its variations in

many prior works [10] — to formulate a demand function related

to the state of the system — i.e., the cri, rct and nat information.

Instead of defining, per-task 𝜏𝑖 , a demand function between two

absolute instants 𝑡1 and 𝑡2, we define a demand function relative to
the current state, with a single parameter 𝑡 which is a time in the

future relative to the “current time” (or current instant) in 𝑆 .

We need to separate concerns between current jobs — that can

be disabled (LO case) or extended (HI case) — and future jobs. We

define the number of future jobs of a task, i.e., the number of jobs

the task can release until this future instant.

Definition 19 (Number of future jobs of a task until a

future instant). the maximum number of jobs that 𝜏𝑖 can
release strictly after the current instant in 𝑆 and before a future
instant 𝑡 , and that have a deadline no later than 𝑡 , assuming 𝑆 is in
mode 𝛼 , is:

nj𝛼
𝑆
(𝜏𝑖 , 𝑡) =


0 if 𝐿𝑖 < 𝛼⌊
max{𝑡−ttd𝑆 (𝜏𝑖 ),0}

𝑇𝑖

⌋
otherwise.

The first case represents the fact that no job can be released by a

LO task when assuming HImode. The second case is the amount of

periods that fits within the interval from the deadline of the current

job and 𝑡 . Based on that, we can define the demand function.

Definition 20 (Demand function of a task in a state). The
demand function of a task 𝜏𝑖 in state 𝑆 in mode 𝛼 is a lower bound
on the maximum amount of computation time required by jobs of 𝜏𝑖
between the current instant in 𝑆 and a future instant 𝑡 , only for jobs
of 𝜏𝑖 having deadlines before 𝑡 , assuming 𝑆 is in mode 𝛼 or that the
mode 𝛼 will be reached at the next possible instant. Formally, with
𝛼 ∈ {LO,HI}: df𝛼

𝑆
(𝜏𝑖 , 𝑡)

=


0 if 𝑡 < ttd𝑆 (𝜏𝑖 ) ∨ 𝐿𝑖 < 𝛼

nj𝛼
𝑆
(𝜏𝑖 , 𝑡) ·𝐶𝑖 (𝛼) else if rct𝑆 (𝜏𝑖 ) = 0

nj𝛼
𝑆
(𝜏𝑖 , 𝑡) ·𝐶𝑖 (𝛼) +𝐶𝑖 (𝛼)

−𝐶𝑖 (cri𝑆 ) + rct𝑆 (𝜏𝑖 )
otherwise.

No work must be accounted in the demand df𝛼
𝑆
(𝜏𝑖 , 𝑡) if 𝑡 is be-

fore the deadline of 𝜏𝑖 or if the criticality of 𝜏𝑖 is below the con-

sidered mode 𝛼 . Otherwise, if 𝜏𝑖 is idle, we only consider the de-

mand of future jobs, and do not account for the “bonus” execution

time (𝐶𝑖 (HI) − 𝐶𝑖 (LO)) a running job of a HI task receives if a

mode switch occurs. This is accounted in the third case, together

with the remaining time (rct𝑆 (𝜏𝑖 )) of the current job. Notice that
njcri𝑆
𝑆
(𝜏𝑖 ,ttd𝑆 (𝜏𝑖 )) = 0, so dfcri𝑆

𝑆
(𝜏𝑖 ,ttd𝑆 (𝜏𝑖 )) = rct𝑆 (𝜏𝑖 ). We can

now define the global demand bound.

Definition 21 (Demand bound function in a state). The
global demand bound function is the total maximum amount of
computation time required between the current instant in 𝑆 and a
future instant 𝑡 by jobs of the task set 𝜏 , only for jobs having deadlines
before 𝑡 , assuming mode 𝛼 . Formally: dbf𝛼

𝑆
(𝑡) = ∑

𝜏𝑖 ∈𝜏 df
𝛼
𝑆
(𝜏𝑖 , 𝑡).

The definitions of nj, df and dbf uses the mode parameter 𝛼 . This

allows us to consider the current mode when we set 𝛼 = cri𝑆 and to

anticipate the demand if a mode switch occurs when we set 𝛼 = HI.

Lemma 3. For feasibility it is necessary to have ∀𝜏𝑖 ∈ Active (𝜏) :
ttd𝑆 (𝜏𝑖 ) ≥ dbfcri𝑆

𝑆
(ttd𝑆 (𝜏𝑖 )).

Oracle 4. Over demand.

{𝑆 | ∃𝜏𝑖 ∈ Active (𝜏) : ttd𝑆 (𝜏𝑖 ) < dbfcri𝑆
𝑆
(ttd𝑆 (𝜏𝑖 ))} ⊆ Unsafe.

Proof. For any 𝜏𝑘 ∈ 𝜏 , njcri𝑆𝑆
(𝜏𝑘 ,ttd𝑆 (𝜏𝑖 )) is the highest possible

ℓ such that nat𝑆 (𝜏𝑘 ) +𝐷𝑘 + (ℓ − 1) ·𝑇𝑘 ≤ ttd𝑆 (𝜏𝑖 ), showing it is the
highest possible number of jobs released by 𝜏𝑘 between the current

instant in 𝑆 and the next deadline of 𝜏𝑖 having a deadline before

ttd𝑆 (𝜏𝑖 ). Note that dfcri𝑆𝑆
(𝜏𝑘 ,ttd𝑆 (𝜏𝑖 )) represents the total amount

of execution time required by 𝜏𝑘 including its potentially active

job and all its future jobs until ttd𝑆 (𝜏𝑖 ), assuming no mode change.

Consequently, dbfcri𝑆
𝑆
(ttd𝑆 (𝜏𝑖 )) is the amount of computation time

required by all jobs of the system with deadline ≤ ttd𝑆 (𝜏𝑖 ). This
quantity corresponds to the work that must be scheduled before

ttd𝑆 (𝜏𝑖 ) without mode switch, so it is necessary, in a uniprocessor

system, that this quantity does not exceed ttd𝑆 (𝜏𝑖 ). □

The above result does not anticipate a mode switch (i.e., 𝛼 = cri𝑆 ),
it gives the necessary condition foreseeing that no mode switch

occurs. Using a similar construct but setting 𝛼 = HI, a necessary
condition that foresees a mode switch can be derived as follows.

Lemma 4. For feasibility it is necessary to have ∀𝜏𝑖 ∈ Active (𝜏) :
ttd𝑆 (𝜏𝑖 ) ≥ dbfHI

𝑆
(ttd𝑆 (𝜏𝑖 )).

This necessary condition guarantees that all HI-tasks in 𝑆 will

have enough time to execute all the rct of both their current and

future jobs, with their deadline prior to those of any active tasks’

jobs, under the assumption that no job explicitly signals completion,

eventually triggering a mode switch at the next possible instant.

Note that this necessary condition optimistically assumes that no

future computing time would be wastefully given to a LO task

until ttd𝑆 (𝜏𝑖 ). In practice, should a LO task be scheduled, then

dbfHI
𝑆
(ttd𝑆 (𝜏𝑖 )) would remain constant, whereas ttd𝑆 (𝜏𝑖 ) will de-

crease, potentially violating this necessary condition.

Oracle 5. HI over demand.

{𝑆 | ∃𝜏𝑖 ∈ Active (𝜏) : ttd𝑆 (𝜏𝑖 ) < dbfHI
𝑆
(ttd𝑆 (𝜏𝑖 ))} ⊆ Unsafe.

Proof. If cri𝑆 = HI, then the Lemma 4 is equivalent to Lemma 3,

and the proof provided for Lemma 5.3 holds. If cri𝑆 = LO, we con-
sider two cases, one where a mode switch, triggered by a HI-task
𝜏𝑘 ∈ {𝜏 | 𝐿𝑘 = HI}, can occur before ttd𝑆 (𝜏𝑖 ), and the other where

it may not. For a (current or future) job of 𝜏𝑘 to trigger a mode

switch, it is sufficient to have rct(𝜏𝑘 ) > 0 ∧ ttd𝑆 (𝜏𝑖 ) ≥ ttd𝑆 (𝜏𝑘 ) or
rct(𝜏𝑘 ) = 0 ∧ ttd𝑆 (𝜏𝑖 ) ≥ ttd𝑆 (𝜏𝑘 ) +𝑇𝑘 . In such cases, we can antic-

ipate the mode switch and enforce ∀𝜏𝑖 ∈ Active (𝜏) : ttd𝑆 ′ (𝜏𝑖 ) ≥
dbfcri𝑆′

𝑆 ′ (ttd𝑆 ′ (𝜏𝑖 )) as a necessary condition as per Lemma 3, with

𝑆 ′ = critUp𝑆 (⊥). Indeed be noted that critUp𝑆 (⊥) merely in-

creases the rct of the active HI-jobs and discards the LO tasks.

Therefore, if anything, this anticipation is more optimistic since it

forestalls the wasteful scheduling of LO-jobs. Furthermore, given

cri𝑆 ′=HI, we can express dbfcri𝑆′
𝑆 ′ (ttd𝑆 ′ (𝜏𝑖 )) as dbf

HI
𝑆 ′ (ttd𝑆 ′ (𝜏𝑖 )), so

if this inequality does not hold, 𝑆 ′ is deemed unsafe and so is 𝑆 as 𝑆 ′
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is more optimistic. If a mode switch occurrence cannot be guaran-

teed before ttd𝑆 (𝜏𝑖 ), i.e., when rct(𝜏𝑘 ) > 0 ∧ ttd𝑆 (𝜏𝑖 ) < ttd𝑆 (𝜏𝑘 ) or
rct(𝜏𝑘 ) = 0 ∧ ttd𝑆 (𝜏𝑖 ) < ttd𝑆 (𝜏𝑘 ) + 𝑇𝑘 , then dfHI

𝑆
(𝜏𝑘 ,ttd𝑆 (𝜏𝑖 )) =

0 per definition. Moreover, for LO-tasks 𝜏 𝑗 ∈ {𝜏 | 𝐿𝑗 = LO},
dfHI

𝑆
(𝜏 𝑗 ,ttd𝑆 (𝜏𝑖 )) = 0, and ttd𝑆 (𝜏𝑖 ) ≥ 0 = dbfHI

𝑆
(ttd𝑆 (𝜏𝑖 )) per defi-

nitions. Thus, under these circumstances, this oracle’s inequality

never holds and 𝑆 is never deemed unsafe by it.

□

6 Evaluation
To demonstrate the benefits of the search space reduction and

the accuracy of the exact test, we developed a C++ tool [36] that

takes a task set and scheduling policy as inputs, converts it into

an automaton as in section 3, and explores it according to Algo-

rithm 1, allowing to assess the schedulability of the task set. The

same task set and scheduling policy can be explored with different

optimisations (simulation relation and oracles), resulting in the

same outcome (safe or unsafe) but with different time and space

complexity. Experiments were run on a server computer with 128

GB of RAM and a 128-core AMD Ryzen Threadripper 3990X CPU

running at 2.9GHz.

6.1 Random task set parameter generation
Inspired by the works of Baruah [8] and Ekberg [18], the task sets

used in our experiments were randomly generated using a Python

tool [36] as follows:𝑇𝑖 is an integer number generated according to

a log-uniform distribution from the range of [𝑇min,𝑇max]; 𝐿𝑖 = HI
with probability 0 ≤ 𝑃HI ≤ 1, otherwise 𝐿𝑖 = LO, and 𝐷𝑖 = 𝑇𝑖 .

The generation of𝐶𝑖 values depends on a target average utilisation

𝑈 ∗ ∈ [0, 1]. Then 𝛿 is a float drawn from the uniform distribution

U (−𝜇, 𝜇) with 𝜇 = min{𝑈 ∗, 1 −𝑈 ∗}. The target LO-criticality util-

isation of tasks, 𝑈 ∗LO, are generated using the Dirichlet-Rescale

(DRS) algorithm [24], that gives an unbiased distribution of utilisa-

tion values. We give the following inputs: 𝑛 the number of tasks,

𝑈 = 𝑈 ∗ + 𝛿 , 𝑢min
𝑖

= 1/𝑇𝑖 and 𝑢max
𝑖

= 1 for 1 ≤ 𝑖 ≤ 𝑛. Similarly, the

target HI-criticality utilisations of tasks,𝑈 ∗HI, are generated using

DRS too with, as inputs, the same number of tasks 𝑛, 𝑈 = 𝑈 ∗ − 𝛿 ,
𝑢min
𝑖

= 𝑈 ∗LO (𝜏𝑖 ) and 𝑢max
𝑖

= 1 if 𝐿𝑖 = HI, 𝑢min
𝑖

= 0 = 𝑢max
𝑖

other-

wise, for 1 ≤ 𝑖 ≤ 𝑛. 𝐶𝑖 (LO) = 𝑈 ∗LO (𝜏𝑖 ) ·𝑇𝑖 rounded to the nearest

integer. 𝐶𝑖 (HI) = 𝑈 ∗HI (𝜏𝑖 ) · 𝑇𝑖 rounded to the nearest integer if

𝐿𝑖 = HI and 𝐶𝑖 (HI) = 𝐶𝑖 (LO) otherwise. Task sets were dropped

if 𝑈 LO (𝜏) > 1 or 𝑈HI (𝜏) > 1. Duplicate task sets were discarded,

as were task sets with all tasks sharing the same criticality level.

Additionally, task sets were dropped if | 𝑈 avg (𝜏) − 𝑈 ∗ |> 0.005.

Deadlines are implicit because our explorations will use among

others EDF-VD (see Definition 9) which can only cope with such

deadlines [9]. Hereunder, a range of numbers from 𝑓 to 𝑡 with a

step increase of 𝑠 will be denoted by [𝑓 ; 𝑡 ; 𝑠].

6.2 Antichain impact on state space exploration
Figure 2 compares the performance of antichain breadth first search

using the idle tasks simulation relation (ACBFS) and using classical

breadth first search (BFS) with EDF-VD and without any oracle.

Task sets were generated with varying number of tasks and max-

imum periods, the rest of the parameters being fixed. For each

combination of parameters, 10 sets were generated. All task sets
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Figure 2: Execution times in seconds before halt for BFS
and ACBFS. Dashed line is 𝑥 = 𝑦, dotted line is the linear
regression on the samples (after log

10
).

were schedulable, hence, their automaton was fully developed as

every single state reachable from the initial state was visited (or

simulated). ACBFS outperforms BFS in execution time, except for

the few cases where the search space is very small — in such cases,

both algorithms ran for less than 0.01 second. This shows that

ACBFS and the idle tasks simulation relation scale better than BFS,

reducing the exploration time by at least one order of magnitude.

As the state space size increases, the execution time gap increases,

as indicated by the regression line. Results on the number of states

visited for each of the algorithms are on par, but analysing their

execution time takes into account the (potential) extra computing

time of the antichains.

Figure 3(a) illustrates the scalability of ACBFS with a varying

quantity of tasks and maximum period. Both parameters contribute

to prolonging the exploration time, but the number of tasks exerts

a stronger and more consistent effect. The automaton’s size being

on the order of O((𝑇max)𝑛) explains this stronger impact for the
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number of tasks. The period’s effect is less stable, given that the

𝑇max
parameter serves as an upper bound to the distribution from

which the period is drawn; as such, even with a high 𝑇max
value,

the periods can still be set at lower levels. The majority of task

sets, composed of 8 tasks, were successfully explored within the

allocated 15-minute timeout. As for the maximum period parameter,

timeouts were observed as early as 𝑇max = 100. Nearly a third of

the task sets with𝑇max = 350 exceeded the timeout, suggesting that

specific combinations of periods can lead to a larger state space.

While the antichain optimization enables a reduction in the state

space, the problem remains challenging and experiences exponen-

tial growth, especially considering that it deals with sporadic tasks.

Most of the task sets with𝑛 = 7 and somewith𝑛 = 8 can be explored

within an acceptable timeframe, as ACBFS can manage at least one

more task than BFS (see Figure 2). Beyond, both the execution time

and required amount of memory (the maximal explored states are

stored as per Algorithm 1) to explore some of the task sets become

prohibitive. In comparison, other papers providing an exact test for

(single-criticality) sporadic tasks sets with FJP schedulers experi-

mented with task sets parameters up to𝑇max = 6 [5], 𝑛 = 8,𝑇max =

8 [21] and 𝑛 = 4,𝑇 ∈ {1, 2, 5, 10, 20, 50, 100, 200, 1000} [46]. In real-

world situations, certifying a task set requires a single exploration;

in those cases, the exploration time could extend longer than in our

experiments, allowing to increase task number or periods.

6.3 Oracle impact
To measure the impact of the oracles, 2100 task sets were generated

with 𝑇min = 5,𝑇max = 30, 𝑃HI = 0.5, 𝑛 = 5 and 𝑈 ∗ ∈ [0.8; 1; 0.01]
with 100 task sets for each values of𝑈 ∗. Figure 3(a) shows our sim-

ulator is capable of accommodating larger systems. The parameters

here selected expedite the exploration process, thereby enhancing

the quantity of results and facilitating the accrual of more robust,

aggregated metrics. All task sets were explored with ACBFS and

EDF-VD, several times with different oracles. As baseline, an ex-

ploration with ACBFS without any oracle is used. During those
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the execution time.

explorations, 923 task sets were found to be unschedulable. Thus,

about half of the task sets are schedulable, obtained over several

(omitted) iterations of the experiments to tune the range of utili-

sations. We expect the impacts of oracles to differ depending on

the actual schedulability of the evaluated task sets. For example,

unsafe oracles computed on schedulable task sets will not reduce

the search space and will only constitute overheads — this, however,

cannot be known a priori by the system designer. For each oracle,

Figure 4 shows the avoided state ratio and speed-up ratio between

ACBFS used with and without the oracle. The reported values are

median over all explorations, split over task sets schedulability.

TheHI idle point safe oracle barely reduces the number of visited

states for schedulable and unschedulable task sets (0.02% and 0.07%).

The execution time increases are both 0.4%, reflecting the additional

computing cost of the oracle.

The first unsafe oracle, negative laxity, already allows avoiding

60.1% of the states, leading to an execution time reduction of 61.2%

for unschedulable task set, while increasing the execution time by

3.0% of the schedulable ones — computing the laxity only requires

O(𝑛) operations on each visited state.

Then, the negative worst laxity unsafe oracle builds on top of

the laxity and brings another level of impact. 67.7% of the states

are dropped, translating to a time execution reduction of 70.1% for

unschedulable task sets, while only having a median time execution

increase of 3.6% on schedulable task sets. This significant impact

comes from the anticipation of what will happen in HI mode when

still in LO mode, hence enabling to detect a deadline miss earlier.
The over demand oracle computes the current mode demand.

This approach brings a step change as it avoids 91.6% of the states

and reduces the execution time by 91.7% for unschedulable task sets,

while increasing the execution time of the schedulable task sets

by 5.6%. While strong, it is more expensive than the other unsafe

oracles, as shown by the increased time with schedulable task sets.

Finally, the HI over demand oracle combines both worlds by

analysing all tasks and anticipating the demand at the next critical-

ity level. This approach is the strongest, dropping 98.8% of states,

reducing the execution time by 98.6% for unschedulable task sets

and increasing the execution time by 5.2% on schedulable task sets.

To summarise the combined impacts of antichains with idle tasks

simulation and the best oracle (HI over demand), Table 2 outlines

statistics. Generation parameters are the same as the oracle impact

experiment, Figure 4, except for 𝑇max = 20, resulting in balanced

schedulability. The table shows statistics about the composed effect

of both the antichains and the best oracle, achieving up to 99.998%

reduction in the searched state space (2968037 visited states for BFS

against 42 for ACBFS with the oracle).

Table 2: Statistics on the number of visited states.
𝑃HI = 0.5,𝑇min = 5,𝑇max = 20, 𝑛 = 5,𝑈 ∗ ∈ [0.8; 1; 0.01]

Search BFS ACBFS

Oracle None HI over demand None HI over demand

min 9905 35 (-100%) 668 (-93%) 29 (-100%)

mean 746974 480688 (-36%) 75374 (-90%) 46024 (-94%)

std 999984 819378 (-18%) 126110 (-87%) 107731 (-89%)

median 410063 217928 (-49%) 35888 (-91%) 15459 (-96%)

max 11875126 11875126 (-0%) 2687577 (-77%) 2687577 (-77%)
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6.4 Scheduling analysis
Our framework enabled us to step into scheduling experimentations,

aiming to understand the real performance of EDF-VD. Specifically,

automata were explored with ACBFS, the HI over demand unsafe

oracle and without safe oracles. Task sets were generated with

𝑇min = 5,𝑇max = 30, 𝑃HI = 0.5, 𝑛 = 5 and 𝑈 ∗ ∈ [0.5; 1; 0.05]. For
each utilisation, 1000 task sets were generated. Figure 3(b) shows

the average schedulability ratio for each target average utilisation.

It shows the schedulability ratio of EDF-VD’s sufficient test [9],

EDF-VD exact test using our automaton exploration approach, and

of a novel algorithm Least Worst Laxity First (LWLF).

Definition 22 (LWLF scheduler). The Least Worst Laxity First
scheduler, or LWLF, is defined as follows. We letminwl (𝑆) be the task
𝜏𝑖 ∈ Active (𝑆) which has the minimal worst laxity in 𝑆 . That is, 𝜏𝑖
is s.t. ∀𝜏𝑘 ∈ Active (𝑆) \ {𝜏𝑖 }: worstLaxity𝑆 (𝜏𝑘 ) > worstLaxity𝑆 (𝜏𝑖 )
or worstLaxity𝑆 (𝜏𝑘 ) = worstLaxity𝑆 (𝜏𝑖 ) ∧ 𝑘 > 𝑖 . Then, for all states
𝑆 , we let:

schLWLF (𝑆) =
{
⊥ if Active (𝑆) = ∅
minwl (𝑆) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

EDF-VD’s actual schedulability significantly outperforms its suf-

ficient test, underscoring the test’s pessimism. Notice, however,

that this exact test — even with antichains and oracles — can be a

time-intensive process, whereas the EDF-VD’s sufficient test is com-

puted in polynomial time. For large values of 𝑛, the exact test might

be impractical, so sufficient tests remain relevant. One can always

first run a sufficient test, and if negative, try the exact analysis.

LWLF brings further schedulability significant improvements

over EDF-VD. We derived LWLF after observing the strong impact

of the worst laxity oracle — since it can detect a failure earlier,

it hinted the existence of a scheduling algorithm integrating this

information to guide the scheduling decision. Similarly, we believe

that a scheduling algorithm building on top of the HI over demand

oracle can be derived and is expected to bring even better results.

7 Related Work
There is extensive related research on real-time scheduling. Below,

we categorize and summarize the most relevant prior work to ours.

Scheduling tests. Utilisation based conditions were produced,

both sufficient [9] and necessary [41], the latter also adapting them

for multiprocessor. Demand-bound function sufficient schedula-

bility tests have also been produced, for dual-criticality [13, 16],

then extended to any number of criticalities [25] and to cope with

deadline reduction on mode change [18].

Formal verification for mixed-criticality scheduling. Burns
and Jones used time bands and rely-guarantee conditions [12, 26].

Inspired by Hoare’s logic, they proposed a framework to formally

specifying the temporal behaviour of schedulers, hence allowing the

verification of schedulers and their code generation. Abdeddaïm [1]

provided exact schedulability tests for FJP schedulers for a more

modular mixed criticality model, where only specified subsets of

LO (sporadic) tasks are discarded in HI mode depending on the

subset of HI tasks exceeding their LO budget.

Using automata to check schedulability. Already discussed

in our introduction (see section 1).

Antichains. The antichain technique has been introduced by

De Wulf et al. [45] to improve the practical performances of costly

algorithms on automata. These ideas have later been applied to

produce a series of efficient algorithms for automata [2, 14], model-

checking [15] and games [20, 22, 40].

Schedule-Abstraction Graphs (SAG). Another reachability-
based response-time analysis was developed for an exact test on

sets of non-preemptive jobs with release jitter and variable exe-

cution time with a FJP scheduler upon a uniprocessor [30], then

upon multiprocessor [31], with preemption [23], and several kinds

of inter-job constraints [32–34]. Applying partial-order reduction

rules into SAG mitigated combinatorial explosion [38, 39]. Notice a

sequence of jobs — the expected input of SAG methods — cannot
support the sporadic task model. By definition, the set of jobs is

not known in advance, which is not the case in systems that are

periodic or with release jitters.

8 Conclusion
We have developed a generic framework for exact schedulability

assessment in uniprocessor mixed-criticality systems, by reducing

it to the safety problem in an automaton. We combined insights

from the formal verification community — like antichains, simula-

tion relations and the ACBFS algorithm — and from the real-time

research — like safe and unsafe oracles — to make the approach

more practical. We demonstrated in simulations that those allow to

reduce the search space by up to 99.998%, enabling the evaluation

of existing and new scheduling algorithms, EDF-VD and LWLF, and

comparing it to a prior sufficient test [9]. Our experimental evalua-

tion also quantifies the advantages and the limits of the antichain

technique.

Future work. Although the scalability of our approach remain

limited (up to 8 tasks), our algorithm is generic, allowing one to in-

corporate a range of other optimisations, and can be applied to other

scheduling problems. Our work can be extended to consider more
realistic mixed criticality models [11], e.g., regarding LO-criticality
tasks that should not be abandoned callously. We then need to

modify the completion transition, in order to let LO-tasks run until

completion or adjust the period and deadline of certain LO-tasks. A

multi-processor version of the model is already supported in prior

work for sequential jobs [21, 29]; we would have to combine it

with the extensions proposed in this work. In addition, the reduc-

tion can be adapted to support other platforms and task models

such as modelling varying CPU speed and job-level parallelism (e.g.,

the gang model), by reducing the rct values according to the CPU

speed and the number of CPU cores assigned to the job. The sch(𝑆)
function would return the selected CPU speed factor together with

how many CPUs are assigned to each job. A power function could

then be used to label the clock-tick transitions with numeric values,

hinting shortest path exploration (instead of breadth-first search) to

minimize power consumption. Supporting the DAG task model and
federated scheduling would require the schedule function to account
for precedence constraints. To account for preemption delays, the
model could force idle CPU time by forcing run = ⊥ for a given

number of run transitions when the scheduler is switching to a

different task across calls.
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