
CLoF: A Compositional Lock Framework for
Multi-level NUMA Systems

Rafael Lourenco de LimaChehab∗†
Huawei Dresden Research Center
Technische Universität Dresden

Germany
rafael.chehab@huawei.com

Antonio Paolillo∗†
Huawei Dresden Research Center

Germany
antonio.paolillo@huawei.com

Diogo Behrens†
Huawei Dresden Research Center

Germany
diogo.behrens@huawei.com

Ming Fu†‡
Huawei Dresden Research Center

Germany
ming.fu@huawei.com

Hermann Härtig
Technische Universität Dresden

Germany
hermann.haertig@tu-dresden.de

Haibo Chen
Huawei OS Kernel Lab

Shanghai Jiao Tong University
China

hb.chen@huawei.com

Abstract
Efficient lockingmechanisms are extremely important to sup-
port large-scale concurrency and exploit the performance
promises of many-core servers. Implementing an efficient,
generic, and correct lock is very challenging due to the dif-
ferences between various NUMA architectures. The perfor-
mance impact of architectural/NUMA hierarchy differences
between x86 and Armv8 are not yet fully explored, leading
to unexpected performance when simply porting NUMA-
aware locks from x86 to Armv8. Moreover, due to the Armv8
Weak Memory Model (WMM), correctly implementing com-
plicated NUMA-aware locks is very difficult.
We propose a Compositional Lock Framework (CLoF)

for multi-level NUMA systems. CLoF composes NUMA-
oblivious locks in a hierarchy matching the target platform,
leading to hundreds of correct by construction NUMA-aware
locks. CLoF can automatically select the best lock among
them. To show the correctness of CLoF on WMMs, we pro-
vide an inductive argument with base and induction steps
verified with model checkers. In our evaluation, CLoF locks
outperform state-of-the-art NUMA-aware locks in most sce-
narios, e.g., in a highly contended LevelDB benchmark, our
best CLoF locks yield twice the throughput achieved with
CNA lock and ShflLock on large x86 and Armv8 servers.

∗The first two authors contributed equally to the paper.
†Also with Huawei OS Kernel Lab.
‡Corresponding author.

SOSP ’21, October 26–29, 2021, Virtual Event, Germany
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8709-5/21/10.
https://doi.org/10.1145/3477132.3483557

CCSConcepts: •Computer systems organization→Mul-
ticore architectures; • Software and its engineering→
Mutual exclusion; Synchronization; Correctness; • Theory
of computation→ Concurrency.

Keywords: multicore concurrency, non-uniform accessmem-
ory, weak memory models
ACM Reference Format:
Rafael Lourenco de Lima Chehab, Antonio Paolillo, Diogo Behrens,
Ming Fu, Hermann Härtig, and Haibo Chen. 2021. CLoF: A Compo-
sitional Lock Framework for Multi-level NUMA Systems. In ACM
SIGOPS 28th Symposium on Operating Systems Principles (SOSP ’21),
October 26–29, 2021, Virtual Event, Germany. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3477132.3483557

1 Introduction
Many-core servers such as those powered by x86-based AMD
EPYC [3] andArmv8-basedHuawei Kunpeng 920 [22] proces-
sors have been widely deployed in industry. In these modern
servers, CPUs are organized into clusters known as NUMA
(Non-Uniform Memory Access) nodes, which are further
grouped into packages. Developing efficient locking mecha-
nisms for such systems is important for the scalability and
performance of multi-threaded applications, but also very
challenging. For example, threads experience a wide spec-
trum of memory-access latencies depending on the memory-
hierarchy level in which the data is located, e.g., in L1/L2/L3
caches or in the main memory of another NUMA node.

The design of high-performant locks for such multi-level
NUMA systems should take the following four key aspects
into account.

A1 (multi-level): Locks must support the whole mem-
ory hierarchy of the target system, not only NUMA nodes,
but also packages, cache levels, and cache coloring/tagging
policies. By exploiting locality in each level, lock implemen-
tations can reduce memory traffic and boost performance.

A2 (heterogeneity): Each level groups cores together,
e.g., 2 to 6 cores may share the same L3 partition, while

851

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3477132.3483557
https://doi.org/10.1145/3477132.3483557
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

dozens of threads may share the same NUMA-node memory
bank. Lock algorithms can be tuned according to the con-
tention characteristics of each level — simpler algorithms
tend to be faster under low contention, but suffer under
higher contention.

A3 (architecture-optimized): Different architectures al-
low for different optimizations, e.g., coherence-traffic reduc-
tions specific to x86 but not to Armv8. Lock algorithms can
be tuned according to the architectural peculiarities.

A4 (correctness): Architectures such as Armv8 imple-
ment weak memory models (WMMs), which allow aggres-
sive reorderings ofmemory accesses to improve performance.
To ensure correctness on WMMs, one has to carefully use
memory barriers to enforce the necessary order, which is an
error-prone process.
Existing NUMA-aware locks do not support multiple of

these aspects (see Table 1). CNA lock [11] and ShflLock [24]
only support 2-level memory hierarchies (A1, A2) and, orig-
inally, only target x86 (A3). The rather strong x86 TSO mem-
orymodel already guarantees the necessary order of memory
accesses for these algorithms without the need for barriers.
On the Armv8 WMM, however, barriers are required to en-
force the correct order of memory accesses (A4). Running
them on Armv8 quickly causes hangs or mutual exclusion
violations. In contrast, HMCS [6] does support multi-level
NUMA-systems and provides memory barriers for WMMs.
Nevertheless, it uses one specific lock implementation (i.e.,
MCS lock [31]) for each hierarchy level (A2, A3); and the
proposed memory barriers are incorrect (A4), causing ap-
plications to hang on Armv8 — our prior work on HMCS-
WMM studies and fixes these memory barrier issues [33].
Even though HMCS supports arbitrary hierarchies, the pub-
lished HMCS configurations do not exploit the potential of
the cache levels. Finally, lock cohorting [15] does support
heterogeneous locks in each level, but only works with two
levels (A1) and does not offer guidance on memory barrier
placement (A4).

In this work, we propose a Compositional Lock Framework
(CLoF) for multi-level NUMA systems. Given a set of simple,
NUMA-oblivious spinlocks verified on WMMs, CLoF gen-
erates hundreds of heterogeneous, multi-level NUMA-aware
spinlocks (i.e., CLoF locks) for a target platform, supporting
the user in selecting the best one. While developing CLoF,
we faced four main challenges: first, how to make a multi-
level lock which allows for heterogeneity; second, how to
compose the user-provided NUMA-oblivious spinlocks with-
out requiring any adaption to them; third, how to select the
best lock among the generated locks; fourth, and lastly, how
to ensure the correctness of CLoF locks on WMMs.

To support heterogeneity and combine different spinlock
implementations, we use compile-time syntactic recursion.
To compose the user-provided spinlock implementations, we
devise a context abstraction technique, which standardizes the
use of spinlock interfaces. To select the best lock, we perform

Table 1. Key aspects coverage of recent NUMA-aware locks.

Algorithms A1 A2 A3 A4
CNA lock [11] ✖ ✖ ✖ ✖
ShflLock [24] ✖ ✖ ✖ ✖
HMCS [6] ✔ ✖ ✖ ✖
HMCS-WMM [33] ✔ ✖ ✖ ✔
lock cohorting [15] ✖ ✔ ✔ ✖
CLoF ✔ ✔ ✔ ✔

✔: covered ✖: lacking

a weighted average of the benchmark results, biasing the
weights to focus either on low or high contention scenarios.
Finally, to show correctness, we exploit the recursive nature
of our lock generator. Based on a set of simple but verified
spinlocks for WMMs (such as those in our prior work [32]),
we argue about correctness inductively by model checking
one induction step of CLoF with TLA+ [28] and GenMC [26].
CLoF composes NUMA-oblivious spinlocks verified on

WMMs in an arbitrary hierarchy, generating many correct
by construction NUMA-aware locks (A4) for x86 and Armv8
multi-core platforms. First, CLoF precisely identify the multi-
level hierarchy of the target NUMA systems through micro-
benchmarks (A1). Next, provided a set of NUMA-oblivious
spinlocks — such as Ticketlock [19], MCS lock, and CLH
lock [19] — CLoF exhaustively generates hundreds of multi-
level NUMA-aware locks (A2). Finally, CLoF benchmarks
the generated locks, supporting the user in finding the best
lock for a target system. Once a new NUMA-oblivious lock
is designed to take advantage of an architecture-specific
optimization, e.g., the coherence-aware optimization of Hem-
lock [13] on x86, the process can be repeated (A3).
Our evaluation shows that our best CLoF-locks outper-

form state-of-the-art NUMA-aware locks in most contention
levels: with LevelDB [9] on Armv8, between 109% to 105%
better than CNA lock and ShflLock at mid and high con-
tention; between 4% and 15% better than an equivalently
configured HMCS for all contention levels. We obtain sim-
ilar results on x86 and cross-validate our locks with Kyoto
Cabinet [27].

Contributions. The contributions of this paper are:

• A technique to capture the multiple levels of the mem-
ory hierarchy (§3);

• Two techniques to derive the lock generator: syntactic
recursive generator and context abstraction (§4.1);

• A correctness argument for CLoF (§4.2);
• An approach to select the best generated lock (§4.3).

2 Background
Spinlocks are popular synchronization mechanisms that pro-
tect access to shared data, and are widely used in operating

852

systems and applications. In this section, we briefly introduce
a set of spinlocks and concepts used in this work.

2.1 NUMA-oblivious Spinlocks
Ticketlock [19] is a simple and practical spinlock, usually
consisting of two fields: ticket and grant. To acquire the lock,
a thread atomically increments the ticket and, subsequently,
waits for grant to equal its ticket value. To release the lock,
the lock owner increments the grant field. The key benefit of
Ticketlocks is that they are fair, i.e., threads trying to acquire
the lock do not starve — in this work, we only consider
fair locks. The problem with Ticketlocks is that all threads
spin on a single memory location, namely, the grant field. In
systems with many cores, this global spinning can pressure
the memory subsystem and degrade the performance. Due
to that, locks with local spinning are preferred.
MCS lock [31] is a popular local-spinning lock (it is the

base of Linux qspinlock [8]). In MCS each thread has its
own node. To acquire the lock, a thread appends its node to
the tail of a global queue. The head of the queue is the lock
owner, while the other threads wait on memory locations of
their own nodes. On release, the owner updates the node of
its successor to pass the lock. Since each thread spins on its
own node, the memory location is cached, and the pressure
on the memory subsystem is relieved.
CLH lock [19] is another local-spinning lock, used, for

example, as the big kernel lock in the seL4 microkernel [34].
It creates an indirect list where a thread spins on the node
of its predecessor. On release, the owner writes a message
on its own node and takes its predecessor’s node along for
subsequent lock acquisitions.
Other similar locks exist, and some of them try to profit

from special architectural details to improve performance.
Hemlock [13] is such a special lock, which has local spinning
behavior most of the time. Similar to CLH, it uses an indirect
queue, but it alters the release function such that after the
owner writes on its node, the successor has to reply by re-
setting the value. Hemlock can employ a Coherence-Traffic
Reduction (CTR) technique specific to the x86 architecture.
Counterintuitively, the CTR optimization replaces a load
from x with fetch_add (&x, 0) and replaces a store with
a cmpxchg. The optimization avoids upgrades from shared
to modified state in MESI and MESIF protocols, improving
the lock handover performance.
All these locks have one characteristic in common: they

are NUMA-oblivious and, consequently, do not scale well
beyond one NUMA node. When cores from multiple NUMA
nodes contend for the lock, the strict FIFO order guaranteed
by these locks causes cache lines to jump back-and-forth
between NUMA nodes.

2.2 NUMA-aware Locks
NUMA-awareness in locks has been studied for more than
a decade [30]. In NUMA-aware locks, instead of releasing

the lock in a strict FIFO order, the lock owner may prefer
passing the lock to a thread whose core is in its NUMA
node. This approach can reduce the cache misses of the data
accessed inside the critical section, potentially improving
performance. For example, CNA lock [11] is a modified MCS
lock, in which the lock owner scans the MCS queue and
reorders the waiting threads such that the lock is passed first
to the threads from the same NUMA node. Another lock with
a similar flavor is ShflLock [24], which additionally provides
a configurable reordering policy (called shuffling).
Without major modifications, most NUMA-aware locks

only support 2-level NUMA hierarchies [11, 24, 30]: system
level and NUMA-node level. In contrast, HMCS lock [6] is a
multi-level NUMA-aware lock, which creates a tree of MCS
locks mirroring the configured hierarchy. For example, on
an x86 platform with hyperthreading, the authors suggest a
hierarchy of system level, NUMA-node level, and core level
(i.e., hyperthread pairs). To enter the critical section, the
thread needs to acquire the ownership of the locks on its
path from the leaf till the root (system level), e.g., core, NUMA
node, and system. To exploit locality, the lock is passed to the
waiting thread, which shares most levels (e.g., in the same
core or in the same NUMA node), as long as the threshold
at that level is not reached.

Interestingly, the authors of CNA lock and ShflLock com-
pare their locks to HMCS lock configured with 2 levels only.
With this configuration, CNA and ShflLock perform on par
with HMCS⟨2⟩. In Section 3, we show that a properly con-
figured HMCS can greatly outperform them.

2.3 Heterogeneous NUMA-aware Locks
In HMCS lock, each level contains a set of MCS locks. In
contrast, Lock Cohorting [15] is a technique that allows com-
bining different NUMA-oblivious locks in a 2-level hierarchy.
We say locks created with a hierarchy of different locks are
level-heterogeneous, whereas locks created with a hierarchy
of identical locks are level-homogeneous — e.g., HMCS is
level-homogeneous as it only supports the MCS lock at each
level.

The Lock Cohorting work shows that C-BO-MCS, a level-
heterogeneous lock composing backoff lock [1] andMCS, has
better throughput than C-MCS-MCS, a level-homogeneous
lock. Because C-BO-MCS is unfair, the authors tone down
the usefulness of heterogeneity. Nevertheless, in the next
section, we show that great performance improvements can
be achieved by applying level-heterogeneity to a multi-level
hierarchy of fair locks.

3 A Case for Multi-Heterogeneous Levels
In this section, we motivate the development of CLoF ex-
tending the four key aspects (A1-A4) discussed in the intro-
duction. We conclude the section summarizing our results.

853

0 3 24 48 95
hyperthread 1

95

48

24

3
0

hy
p

er
th

re
ad

2

(a) x86 server

0 4 32 64 127
core 1

127

64

32

4
0

co
re

2

(b) Armv8 server

Figure 1. Throughput heatmap of two threads assigned
to different CPUs. Threads atomically increment a shared
counter for 1s. Absolute values are not relevant; darker tiles
indicate higher throughput. In the heatmaps, one can identify
the levels of the memory hierarchy of each platform.

3.1 Deep NUMA Hierarchies
Modern NUMA architectures have deep hierarchies formed
by packages, NUMA nodes, cache partitions, etc. Unfortu-
nately, vendors often do not expose details about cache or-
ganization to the operating system — sometimes even omit
such details in the documentation. Consequently, tools such
as lscpu in Linux only capture some hierarchy levels (e.g.,
hyperthreads, NUMA nodes, sockets), and miss the level
introduced by L3 cache tagging/partitioning.

To avoid these limitations, we propose a method to exper-
imentally discover the full NUMA hierarchy. We build a sim-
ple benchmark that exposes the actual underlying hierarchy
on any multi-core platform. For a fixed time duration (e.g.,
1s), two threads take turns incrementing a shared counter:
Thread 1 waits the counter to be even before incrementing
it; Thread 2 waits it to be odd before incrementing it. We
assign threads to every possible pair of CPUs and measure
the throughput (increments per second).
We run this experiment on the following two platforms:

an x86 server with two 24-core packages (1 NUMA node per
package), with hyperthreading enabled (2 CPUs per core).
and an Armv8 server with two 64-core packages (2 NUMA
nodes per package), with no hyperthreading (1 CPU per core)
— see Section 5 for details.

Figure 1 shows throughput heatmaps of both servers: x-
axis is the core to which Thread 1 is assigned; y-axis the core
to which Thread 2 is assigned; the darker the heatmap tile,
the higher the throughput — the absolute throughput value
is not relevant for our investigation.

The main diagonal (both threads in same CPU) has mini-
mal throughput in both heatmaps.1 Around the diagonal, one

1Since the counter is incremented alternately between threads, it only
happens on a reschedule andmost of the time is spent on userspace spinning,
keeping the other thread from making progress.

Table 2. Throughput speedups of two threads sharing the
atomic counter in the same cohort over the system cohort.

cohort x86 Armv8

system 1.00 1.00
package 1.54 1.76
NUMA node 1.54 2.98
cache group 9.07 7.04
core 12.18 –

can see groups of darker tiles (with much higher through-
put): three cores in x86 and four cores in Armv8. These
cores share the L3 cache; we call them cache groups. On
the x86 heatmap, we can also observe two secondary diago-
nals (both threads in same core, different hyperthread). The
throughput in this case is the highest (since they also share
L1 cache). Note that the cache groups on x86 are formed by 3
cores/6 hyperthreads, e.g., hyperthreads 0, 1, 2, 48, 49, and 50.
Other levels can also be observed as larger, lighter boxes: the
NUMA nodes around several cache groups and, in Armv8
the packages around two NUMA nodes.

We observe the following:
1. On both servers, cache groups show a greater potential

for performance improvement than the NUMA nodes
themselves.

2. On x86, hyperthreads in the same core display the
highest throughput.

3. On Armv8, the difference between NUMA node and
package is substantially larger than between system
and package.

4. On x86, the difference when crossing the package is
the least noticeable.

A cohort is a group in a specific level of the NUMA hierar-
chy, e.g., a single NUMA node is a cohort in the NUMA-node
level, a single cache group is a cohort in the cache-group level.
Table 2 summarizes the results obtained from the heatmaps
showing the average speedup relative to the system cohort
(i.e., with both threads running on cores of two different
packages). Naturally, the system cohort speedup is 1. For
other cohorts, the closer the threads, the bigger the speedup.
Note that there is no difference between package and NUMA
node cohorts on x86, as there is only a single NUMA node
per package. No value is provided for the core cohort on
Armv8, because there is no hyperthreading on this platform.

Based on these observations, we consider the following
five levels for these servers: core, cache-group, NUMA-node,
package, and system.
To illustrate the performance improvements of locks ex-

ploiting these levels (aspect A1), we compare in Figure 2
the throughput of LevelDB [9] with several locks on the x86
server. Besides MCS lock, we evaluate the HMCS algorithm
with 3 configurations:

854

1 4 8 16 24 32 48 64 95
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ed

ia
n

th
ro

ug
hp

ut
(i

te
r.

/µ
s)

CLoF〈4〉-x86

HMCS〈4〉
HMCS〈3〉
HMCS〈2〉
MCS

Figure 2. LevelDB with increasing contention, comparing
different HMCS configurations and CLoF on x86.

• HMCS⟨2⟩: with 2-levels, NUMA-node and system —
configuration used in the CNA and ShflLock [11, 24];

• HMCS⟨3⟩: with 3-levels, core, NUMA-node and system
— configuration used in the original HMCS work [6];

• HMCS⟨4⟩: with 4-levels, core, cache-group, NUMA-
node and system — a new configuration, to the best of
our knowledge, not proposed in prior work.

We observe that after crossing the NUMA-node level with
24 threads, HMCS⟨2⟩ outperforms MCS. HMCS⟨3⟩ initially
performs worse than HMCS⟨2⟩ because, with less than 48
threads, only one hyperthread per core is used — the over-
head of the additional core level is not yet amortized. Finally,
by adding the cache-group level, HMCS⟨4⟩ achieves up to
60% better throughput than HMCS⟨3⟩. This showcases the
importance of the cache-group level — although not specified
by the OS (e.g., lscpu) nor considered in prior work.

3.2 Potential of Heterogeneous Locks
The best performing lock differs between levels and archi-
tectures. To show that, we select cohorts from our heatmaps
and run LevelDB on them with a set of NUMA-oblivious
locks — see Section 5 for setup details. For x86, the cohorts
are core, cache group, NUMA node, and system; for Armv8,
we use cache group, NUMA node, package, and system.

Figure 3 shows the performance of LevelDB on these co-
horts with different locks. First, note that the best lock differs
between levels (A2). On both platforms, Ticketlock is the
best lock (even if with only a small margin) at the system
level. At this level, only two threads run, one in each NUMA
node in x86 or in each package in Armv8. In contrast, Ticket-
lock performs poorly on the NUMA level. At this level, eight
threads run, one in each cache group. Moreover, the best lock
differs between architectures (A3). At the NUMA-node level,
the best lock is Hemlock on x86 and CLH lock on Armv8.

Note that the difference between the two versions of Hem-
lock in the figure: hem has the x86-specific CTR optimization
(described in Section 2.1) disabled, while hem-ctr has it en-
abled. As expected, CTR can yield better performance on x86;
however, it dramatically degrades performance on Armv8

0 250 500
throughput (iter/ms)

system

NUMA node

cache group

core

ticket

mcs

clh

hem-ctr

hem

(a) x86 server

0 500
throughput (iter/ms)

system

package

NUMA node

cache group

ticket

mcs

clh

hem-ctr

hem

(b) Armv8 server

Figure 3. LevelDB throughput with different NUMA-
oblivious locks on different cohorts at maximum contention.
The best lock differs between platforms (and underlying
architecture) and cohorts.

(the throughput is close to 0). On Armv8, both operations
involved in the optimization are implemented with load-
exclusive/store-exclusive pairs2. Since they access the same
variable, the fetch_add operation will cause the cmpxchg to
repeatedly fail, hindering the thread releasing the lock from
completing its operation. In the remainder of this paper, hem
on x86 denotes Hemlock with CTR enabled, whereas hem on
Armv8 denotes Hemlock with CTR disabled.

3.3 Correctness of Complex Locks on WMMs
To improve performance,WMMarchitectures such as Armv8
can optimize the sequential execution by aggressively re-
ordering memory accesses. Guaranteeing correctness of lock
algorithms on WMMs requires careful use of memory bar-
riers to disable harmful reorderings, while still allowing as
many hardware optimizations as possible. As previously dis-
cussed, existing work on locks, such as CNA and ShflLock,
tends to ignore WMM issues as they target x86.
In this work, we used VSync [32] to mechanically verify

the implementations of ShflLock, CNA, and HMCS and to
maximally relax their barriers, while maintaining their cor-
rectness on Armv8 (A4). However, this approach does not
scale to arbitrary hierarchy depths. The deeper the hierarchy
is, the more threads/cores are required for verification; and
the verification time is generally super-exponential in the
number of threads. For example, the verification of HMCS⟨3⟩
requires 4 threads and takes 10 seconds; the verification of
HMCS⟨4⟩ requires 5 threads and lasts more than a day.

2Armv8.1 introduced LSE instructions [23] that canmitigate the negative im-
pact of CTR in Kunpeng 920 processors. However, the overall performance
with LSE is sometimes worse than with load-exclusive/store-exclusive. Sim-
ilar conclusions were found in experiments with MySQL [4].

855

14 8 16 24 32 48 64 95 127
Number of threads

0.00

0.25

0.50

0.75

1.00

1.25

1.50

M
ed

ia
n

th
ro

ug
hp

ut
(i

te
r.

/µ
s)

CLoF〈4〉-Arm

HMCS〈4〉
MCS

CNA

ShflLock

Figure 4. LevelDB with increasing contention, comparing
different state-of-art locks and CLoF on Armv8.

3.4 In Search for a Composable Approach
Given that modern NUMA architectures have deep hierar-
chies (Section 3.1) and the best lock differs among archi-
tectures and levels (Section 3.2), we propose CLoF in Sec-
tion 4, a framework for building multi-level locks with level-
heterogeneity. CLoF generates NUMA-aware locks that are
correct by construction and tailored to the target platform
(and underlying architecture).

We now demonstrate the potential of CLoF. In Figure 4,
we compare the throughput of LevelDB with the best CLoF-
lock on Armv8, several state-of-the-art NUMA-aware locks,
and MCS lock. For fewer than 32 threads, CNA lock and
ShflLock suffer from a shuffling overhead, degrading their
performance with respect to MCS lock. Once the NUMA
level is crossed (> 32 threads), CNA lock and ShflLock match
and later (> 64 threads) improve over MCS lock because they
support NUMA-node level. Note that CLoF and HMCS do
not introduce that overhead. The support of the full hier-
archy allows HMCS⟨4⟩ to greatly outperform these locks.
Introducing heterogeneity gives CLoF additional 10% to 15%
higher performance from 8 to 128 threads. Similarly, the
heterogeneity aspect is also beneficial for x86. In Figure 2,
CLoF⟨4⟩ outperforms HMCS⟨4⟩ for most contention levels,
e.g., by 5% with 8 threads and 33% with 96 threads.

As we are going to see in Section 5, the best CLoF-lock on
x86 is not composed of the same NUMA-oblivious locks as
the best CLoF-lock on Armv8.

4 The Compositional Lock Framework
Figure 5 describes the CLoF user’s perspective. First, CLoF
requires a hierarchy configuration, i.e., a file describing the
memory hierarchy levels of target platform. As in Section 3.1,
CLoF produces a heatmap of the target platform, from which
the user can identify these levels by grouping tiles colored
with similar intensity. The resulting configuration can be
tuned to select only those levels most relevant to the user (see
example in Section 5.2). Note that, although not currently
implemented, identifying levels in a heatmap can be easily
automated. Next, the user selects a set of NUMA-oblivious

NUMA-oblivious
spinlocks §2:
– Ticketlock
– CLH lock
– MCS lock
– Hemlock

target platform
e.g., 128-core
Armv8 server

Best CLoF-lock(s)
for target platform,
e.g., tkt-mcs-tkt

Verify correctness,
e.g., with GenMC
and VSync [32]

Experimentally
find memory

hierarchy (see §3.1)

Tuning point:
choose selection
policy (e.g., §5)

Apply CLoF Lock
Generator
(see §4.1)

Tuning point:
choose hierarchy
levels (e.g., §5)

Run scripted bench-
mark (see §4.3)

0 4 32 64 127
core 1

127

64

32

4
0

co
re

2

148 162432 48 64 95 127
Number of threads

0.00

0.25

0.50

0.75

1.00

1.25

1.50

M
ed

ia
n

th
ro

ug
hp

ut
(i

te
r.

/µ
s)

CLoF HC-best (tkt-clh-clh-clh)

CLoF LC-best (tkt-clh-tkt-tkt)

HMCS〈4〉
CLoF worst (mcs-tkt-tkt-tkt)

Others (253 locks)

Only locks correct on
the target architecture

hierarchy
configuration

100s of multi-level
heterogeneous locks

Figure 5. Workflow of CLoF: input is a target platform
and a set of NUMA-oblivious locks; output is a correct best
performing multi-level heterogeneous NUMA-aware lock.
Green boxes are the contributions of this work; blue boxes
are optional tuning points for the user; and gray boxes are
outside the scope of this work.

spinlocks, e.g., those described in Section 2. We call these
the basic locks. We verify and optimize these locks using the
VSync framework [32].

The core of CLoF is the lock generator described in Sec-
tion 4.1. Based on the set of correct basic locks and the hier-
archy configuration, the CLoF lock generator outputs hun-
dreds of multi-level heterogeneous NUMA-aware locks. In
Section 4.2, we use an induction argument with model check-
ing to show that CLoF locks are correct by construction.
Finally, the scripted benchmark described in Section 4.3

selects the best CLoF lock for the target platform. The user
can change the default selection policy to prioritize low con-
tention performance over high contention (we evaluate both
policies in Section 5).

The CLoF workflow (Figure 5) is fully automated with the
exception of the tuning points: (1) creating the hierarchy
configuration, and (2) choosing the selection policy.

4.1 The Lock Generator
We now present our lock generator in two steps: first, we
address the issue of supporting multiple levels of heteroge-
neous locks; second, we show how to abstract the spinlocks
to isolate the framework from the lock implementations.

4.1.1 Syntactic Recursion. CLoF employs syntactic re-
cursion to support different locks on each level of the hierar-
chy. Since syntactic recursion unfolds at compile-time (e.g.,
via C++ templates or C macros), it does not have the over-
head of virtual function pointers. We describe the recursion
in the lock generator with a simple domain specific language
shown in Figure 6.

Lock sets. Let 𝑙 be a lock in BasicLocks, i.e., the set of all
NUMA-oblivious locks. Let 𝐿 be a lock in ClofLocks, the set
of all CLoF-generated locks. By construction, the composed

856

(NoCtxLockType) 𝜏𝑛 ::= ttas | ticket | . . .
(CtxLockType) 𝜏𝑥 ::= mcs | clh | hem | . . .
(LockType) 𝜏 ::= 𝜏𝑛 | 𝜏𝑥
(LockId) o ∈ 𝑁𝑎𝑡

(CtxId) c ∈ 𝑁𝑎𝑡

(MetaData) d ::= ...

(BasicLocks) l ::= (𝜏, o, d)
(ClofLocks) L ::= l | CLoF(l, L)
(ClientCode) C ::= acq(L, c) | rel(L, c) | . . .

Figure 6. The grammar of the lock generator language defin-
ing the recursive structure of ClofLocks.

lock CLoF(l, L) is also part of ClofLocks. We call l the low
lock and L the high lock of CLoF(l, L). The low lock l belongs
to a hierarchy level immediately lower than the high lock 𝐿.
Consider the example in Figure 7 with an unfolded hierarchy
of three levels: cache-group, NUMA-node, and system. Low
lock 𝑙3 protects a cohort of the cache-group level, whereas
high lock 𝐿1 protects a NUMA-node and the system cohort.

A low lock 𝑙 consists of the lock type 𝜏 , the unique identi-
fier o, and the metadata d used to link with the high lock and
to pass locks among different levels. Some locks require a
context 𝑐 to operate. Contexts are represented as unique iden-
tifiers CtxId. We discuss contexts in detail in Section 4.1.3.

Typically, a single lock is used to protect a critical section
CS. In CLoF, each thread may acquire a different CLoF-lock
when accessing CS as long as these locks (1) have the same
sequence of levels; and (2) have the same system-level lock
𝑙 , e.g., 𝑙0 in Figure 7. Requirement (1) guarantees a locking
hierarchy to avoid circular waits and deadlocks [18]. Re-
quirement (2) guarantees mutual exclusion of CS. In the
example of Figure 7, a thread that belongs to the left-most
cache-group cohort uses CLoF(𝑙3, CLoF(𝑙1, 𝑙0)) to access CS,
whereas another thread that belongs to the right-most co-
hort uses CLoF(𝑙6, CLoF(𝑙2, 𝑙0)). Note that, for convenience,
our lock generator implementation groups all CLoF-locks
rooted at the same system lock 𝑙0 into a single lock interface,
abstracting from the user which low-level lock the thread
has to acquire first.

Base cases. The client code C provided by the user is
processed to unfold the recursive definition CLoF(l, L). In
particular, lock-acquire and lock-release calls, i.e., acq(L, c)
and rel(L, c), are unfolded with lockgen (see Figure 8); other
statements are kept unmodified. The base cases of lockgen
directly unfold to acquire and release calls of l, e.g., mcs_acq
and mcs_rel when 𝜏 = mcs.

Inductive cases. These cases unfold recursively, adding
code to control the multiple levels while acquiring or releas-
ing a lock. In the unfolded lockgen(acq(CLoF(l, L), c)), a
thread first acquires l before acquiring L, e.g., 𝑙3 before 𝐿1 in

𝑙0

𝑙1 𝑙2

𝑙3 𝑙4 𝑙5 𝑙6

𝐿1

𝐿0

𝑙0

𝑙1

acq
uir
e C
Lo
F(𝑙 3

, 𝐿 1
)

!ke
ep
_lo
ca
l

rel
eas
e 𝑙 1

an
d 𝑙 3

cache-group
level

NUMA-node
level

system
level

threads

Figure 7. CLoF unfolded hierarchy of locks with three levels
(system, NUMA-node, and cache-group). Threads acquire
locks from the lowest cohorts up to the root. keep_local con-
trols up to which level locks may be released. In the example,
keep_local returns false twice, so 𝑙3 and 𝑙1 are released, but
not 𝑙0, which will be passed to the next owner of 𝑙1.

Figure 7. When acquiring L, the thread climbs up the level hi-
erarchy (see acquire direction in Figure 7). Alternatively, the
thread may skip acquiring 𝐿 if the lock is passed within the
cohort of 𝑙 . In Section 4.1.2, we will discuss the lock-passing
mechanism in detail; essentially, we say that a thread passes
𝐿, if the thread does not release 𝐿 but gives 𝐿 to the next
thread acquiring 𝑙 , effectively keeping 𝐿 local to the cohort
protected by 𝑙 . We can see the lock-passing mechanism in
the unfolded lockgen(rel(CLoF(l, L), c)). A thread either re-
leases l and passes L to its successor, or releases both, again
climbing up the hierarchy. For example, in Figure 7, a thread
may release 𝑙3 and 𝑙1 but pass 𝐿0.

Note that we do not specify how the links between locks of
different levels are maintained. Each CLoF(𝑙 , 𝐿) extends the
low lock l withmetadata. Our lock generator implementation
keeps a pointer to the high lock 𝐿 in 𝑙 ’s metadata.

4.1.2 Lock-Passing Mechanism. When a thread 𝑇 re-
leases CLoF(𝑙 , 𝐿), two conditions control the decision of
whether to pass 𝐿 to another thread in the same cohort or
release 𝐿 to a thread from another cohort.
First, 𝑇 can only pass 𝐿 if there is some thread 𝑇 ′ in the

same cohort waiting to acquire 𝑙 . Otherwise, it releases to
another cohort. CLoF employs a strategy similar to the read
indicator by Calciu et al. [5]. Before acquiring l, each thread
𝑇 ′ calls inc_waiters, which atomically increments a counter
in 𝑙 ’s metadata. 𝑇 ′ also calls dec_waiters immediately after
acquiring l. This way, thread𝑇 can detect waiting threads in
the current cohort by calling has_waiters. Note that in some
lock algorithms, the lock owner 𝑇 can easily detect whether
another thread is waiting to acquire a lock without having to
rely on such additional counter variable. For example, inMCS
lock it suffices to check whether the next pointer is set, and

857

lockgen(acq(l, c)) =

{
𝜏𝑛_acq(o) if l = (𝜏𝑛, o, d)
𝜏𝑥_acq(o, c) if l = (𝜏𝑥 , o, d)

lockgen(rel(l, c)) =

{
𝜏𝑛_rel(o) if l = (𝜏𝑛, o, d)
𝜏𝑥_rel(o, c) if l = (𝜏𝑥 , o, d)

lockgen(acq(CLoF(l, L), c)) =
inc_waiters(l.d);
lockgen(acq(l, c));
dec_waiters(l.d);
if (¬has_high_lock(l.d)) {

lockgen(acq(L, high_ctx(l.d)));
}

lockgen(rel(CLoF(l, L), c)) =
if (has_waiters(l.d) && keep_local(l.d)) {

pass_high_lock(l.d);
lockgen(rel(l, c));

} else {
clear_high_lock(l.d);
lockgen(rel(L, high_ctx(l.d))); 1
lockgen(rel(l, c)); 2

}

Figure 8. The lock generator of CLoF. Defining lockgen
allows unfolding the code at compile-time for ClofLocks.

in Ticketlock to check if the difference between grant and
ticket is larger than 1. CLoF supports custom has_waiters
as an optional parameter, which also removes inc_waiters
and dec_waiters from the generated lock.
Second, 𝑇 has to eventually let 𝐿 be acquired by threads

in other cohorts even if a thread 𝑇 ′ in the same cohort is
waiting, otherwise the other cohorts would starve. To avoid
that situation, the keep_local function periodically forces 𝑇
to let 𝐿 go to a different cohort. When either has_waiters or
keep_local returns false, 𝑇 clears a flag in 𝑙 ’s metadata with
clear_high_lock and releases both L and l.When has_waiters
and keep_local both return true,𝑇 calls pass_high_lock, set-
ting a flag in 𝑙 ’s metadata to indicate to the next thread that
L is already acquired. Now, when another thread acquires
CLoF(𝑙 , 𝐿), it can check whether the flag is set by calling
has_high_lock, and decide whether to acquire 𝐿 accordingly.

Note that our keep_local implementation follows a similar
strategy as HMCS: it increments a counter and returns false
if a threshold 𝐻 is reached, resetting the counter. By default,
CLoF uses 𝐻 = 128 for each level. Excessively high 𝐻 values
might affect short-term fairness and should be avoided (see
the original work for a thorough analysis [6]). Although
different strategies are possible, they are outside the scope
of this paper.

4.1.3 Context Abstraction. To fully isolate the lock gen-
erator from the implementations of basic locks, wemust treat
the basic locks as black boxes, abstracting their inner work-
ings. That boils down to abstracting the context of diverse
lock implementations to a common denominator.

There are two common patterns of the acquire/release in-
terfaces that we consider in this work. Locks without a con-
text (NoCtxLockType in Figure 8) usually spin globally, e.g.,
Ticketlock. Their acquire/release interfaces only take one ar-
gument: the lock address. Context-based locks (CtxLockType
in Figure 8) are common in local spinning algorithms such
as MCS and CLH locks. In addition to the lock address, their
acquire/release interfaces3 also expect the address of a con-
text. The context is an object typically used by the thread to
enqueue itself in the lock-queue and, therefore, is exclusive
to each thread. Among other things, the context contains a
memory location on which a thread spins. To support both
lock types, the lock generator initially assumes all locks re-
quire a context and eventually removes the context in the
recursive unfolding of lockgen if the lock requires no con-
text. From this point onwards, we focus on the context-based
locks only.

Context invariant. Although some locks may allow for
a thread to use the same context in multiple concurrent lock
acquisitions (e.g., Hemlock), most context-based locks do not
allow that (e.g., CLH and MCS lock). To illustrate why this is
important, consider the MCS lock: when acquiring an MCS
lock 𝑙1, a thread appends its context 𝑐 to a queue, whose tail
is kept in 𝑙1. The context 𝑐 is now visible to other threads
trying to acquire 𝑙1; 𝑐’s next pointer may be modified to point
to the successor thread. If 𝑐 is reused to acquire another lock
𝑙2 while it is linked in 𝑙1, then 𝑐 may be modified again,
corrupting 𝑙1’s queue. In such cases, threads acquiring 𝑙1
may hang. Similar issues can happen in other context-based
locks, causing deadlocks or mutual exclusion violations.

CLoF aims at generality and support of any context-based
lock. Therefore, CLoF has to guarantee a context invariant: no
context is ever used to concurrently acquire/release multiple
locks. With traditional locks such as MCS lock, the user
typically enforces this invariant by allocating a context per
thread, or keeping the context in the stack. In CLoF(𝑙 , 𝐿),
to acquire the lowest lock 𝑙 , threads also use the typical
per-thread context. To acquire the high lock 𝐿, however,
threads need a different context — call it 𝑐 . The context 𝑐 is
necessary because 𝐿 is either a basic lock 𝑙 ′ or a composed
lock CLoF(𝑙 ′, 𝐿′); and 𝑙 ′ requires 𝑐 to be acquired or released.
To transparently provide contexts to the high locks, our lock
generator extends l’s metadata with such a context 𝑐 . In order
to guarantee the context invariant, CLoF enforces that only
the owner of 𝑙 can use 𝑐 to acquire or release 𝐿.

3Locks with more than two parameters can have their interface rewritten to
group all shared variables together and all local ones into two parameters.

858

The release order of CLoF(𝑙 , 𝐿) is crucial to guarantee the
context invariant (see 1 and 2 in Figure 8). A deadlock
could easily happen if one would inadvertently invert the or-
der in which locks are released, i.e., first releasing 𝑙 and then
𝐿. If a thread 𝑇1 releases 𝑙 before releasing 𝐿, then a thread
𝑇2 can acquire 𝑙 between both releases and immediately try
to acquire 𝐿. In such case, 𝑇2 retrieves 𝑐 from 𝑙 ’s metadata
(with high_ctx) and tries to acquire 𝐿, while𝑇1 uses the same
𝑐 to release 𝐿. This concurrent use of the context violates the
invariant causing the issues mentioned above.

Thread-obliviousness. Remember when a thread passes
𝐿, it does not release it. Consequently, L is sometimes ac-
quired by one thread and released by another. Hence, the
lock implementations used in high locks have to be thread-
oblivious — lock cohorting has a similar requirement [15].
Most locks are thread-oblivious provided that the thread re-
leases lock L using the same context 𝑐 that it previously used
to acquire L. Hemlock is an exception: it defines a thread-
local context and implicitly accesses this context whenever
necessary — which is why the authors claim that the lock is
context-free, despite of implicitly using a context. By defining
the context explicitly and passing it to the normal acquire/re-
lease interface, Hemlock becomes thread-oblivious.

4.2 CLoF Correctness
We now argue that locks generated with CLoF are correct.
For that we sketch an induction proof and mechanically
check both base and induction steps with model checkers.

4.2.1 Properties. A lock is correct if it satisfies mutual
exclusion and progress. Two progress properties concern us:
fairness and spinloop termination. Fairness guarantees that
any thread trying to acquire the lock will eventually succeed
— this property is also called starvation freedom. Not all locks
are fair, e.g., test-and-test-and-set (TTAS) [19]. Unfair locks
should at least satisfy spinloop termination. Spinlock termina-
tion guarantees that each thread acquiring or releasing the
lock eventually succeeds provided the client code is finite.
Note that fair locks also satisfy spinloop termination.

Theorem 4.1 (CLoF correctness). For all 𝐿 in ClofLocks, 𝐿
is correct, i.e., 𝐿 satisfies mutual exclusion and spinloop termi-
nation. Moreover, 𝐿 satisfies fairness if 𝐿 is a fair basic lock or
composed from fair basic locks.

4.2.2 Proof Sketch. We start with the induction step.

Induction step: 𝐿 = CLoF(𝑙 , 𝐿′) is correct, where 𝑙 is in
BasicLocks and 𝐿′ in ClofLocks. The induction hypothesis is
that 𝐿′ is correct. For now, we assume the basic lock 𝑙 to be
correct and revisit this assumption in the base step. We show
the induction step is correct with two model checkers.
First, we model CLoF(𝑙 , 𝐿′) in TLA+ and utilize the ac-

companying TLC model checker [28] to show that mutual
exclusion and fairness properties hold as well as the context

invariant (Section 4.1.3). Since 𝑙 is correct by assumption
and 𝐿′ is correct by the induction hypothesis, we can re-
place them with abstract fair locks. Their state is modeled by
queues (sequences in TLA+) and acquire/release functions
are modeled as single steps. The remainder of the model is
almost a one-to-one mapping of lockgen in Figure 8. Unfor-
tunately, TLA+ can only model sequentially consistent (SC)
memory accesses and alone cannot guarantee CLoF(𝑙 , 𝐿′)
with relaxed atomics4 is correct on WMMs.

Second, we show CLoF(𝑙 , 𝐿′) is also correct on WMMs by
model checking the induction step again with GenMC [26],
while maximally relaxing the memory barriers to improve
performance with VSync [32]. As in the TLA+ model, we
represent 𝑙 and 𝐿′ with an abstract fair lock, i.e., a verified
Ticketlock implementation. With that we can show mutual
exclusion and spinloop termination hold on WMMs. Note that
although spinloop termination is necessary to guarantee
fairness, it does not imply fairness. Currently, there is no
model checking approach capable of verifying fairness of
non-trivial locks on WMMs. Therefore, we can only gauge
fairness with our experiments on real hardware.

Base step: 𝐿 = 𝑙 is correct, where 𝑙 is in BasicLocks. As
described in Figure 5, we take as input only correct NUMA-
oblivious spinlocks. Our implementations were verified on
WMMs with GenMC and — as CLoF itself — optimized with
VSync to maximally relax their memory barriers.

4.2.3 Discussion. To conclude the correctness argument,
we highlight three important aspects of CLoF.

Memory barriers onWMMs. With VSync, we identified
that all memory accesses introduced by the highlighted aux-
iliary functions in lockgen (Figure 8) can be relaxed, i.e., re-
quire no additional memory barriers, as long as the memory
barriers already present in the basic locks are maintained.

Fairness. A CLoF-lock provides fairness only if its basic
locks are also fair. This can be easily shown with our TLA+

model: the fairness property is violated if we replace any
of the abstract fair locks with an unfair one. For example,
consider the hierarchy in Figure 7, if 𝑙0 is a TTAS lock, i.e., an
unfair lock, then one of the NUMA-node cohorts can starve,
being unable to successfully acquire 𝑙0 during long periods.
For most applications, the use of fair locks is preferable, and
we only consider fair locks in the remainder of this paper.

Model checking deep hierarchies. Even though existing
model checkers cannot fully verify fairness on WMMs, veri-
fying mutual exclusion and spinloop termination is essential
for locks optimized with relaxed memory barriers. A single
missing barrier can easily cause the application to crash,
hang, or corrupt data. Unfortunately, even an efficient model
4On real hardware withWMM, SC atomics are known to be rather expensive
because they introduce several strong memory barriers; whenever possible,
practitioners tend to employ more relaxed atomics instead.

859

checker such as GenMC does not scale to verify a complete
NUMA-aware lock with support to a hierarchy with more
than 3 levels. For example, a 2-level CLoF-lock with simple
Ticketlocks takes about a second to be model checked; a 3-
level takes almost 3 minutes; and a 4-level times out after 12
hours. This exponential increase of time is due to the greater
number of threads — 3, 4, and 5 threads, respectively — that
are necessary to verify the lock while exercising all possi-
ble memory-access reorderings. If more complex NUMA-
oblivious locks are used (e.g., MCS lock), the model checking
time may be orders of magnitude higher.
In spite of that, the composability of CLoF allows us to

scale the model checking to arbitrary hierarchy depths. Our
correctness argument employs the model checker in the in-
duction and base steps separately. The induction step merely
requires a 2-level CLoF-lock with Ticketlocks, which in turn
requires 3 threads for verification. The NUMA-oblivious
locks of the base step tend to have similar requirements.
In fact, the 10 NUMA-oblivious spinlocks in [32], includ-
ing the complex Linux qspinlock, require 3 threads. Hence,
CLoF enables the exploration of lock designs in deep NUMA
hierarchies with elaborate NUMA-oblivious locks.

4.3 Finding the Best CLoF Lock
Given a hierarchy configuration and a set of basic locks, the
lock generator combines basic locks, one per hierarchy level,
producing hundreds of NUMA-aware locks.
Modern processors are complex and their behavior hard

to predict, especially with concurrent software. Manually
deciding which combination of basic lock provides the best
performance is an error-prone process that highly depends
on the target platform. To find the best lock, we instead
propose an automatic approach: we exhaustively generate
and evaluate all possible combinations of the basic locks.
This results in hundreds of CLoF locks: With a set of 𝑁 basic
locks and𝑀 levels, there are 𝑁𝑀 combinations. In practice,
this number stays relatively low, allowing this exhaustive
evaluation approach to be tractable5.

Scripted benchmark. After generating the locks, we run
a quick performance evaluation using a selected benchmark.
The selected benchmark must support changing the lock
implementation and the number of threads trying to acquire
the lock simultaneously. Note that selecting a benchmark
matching the target workload may improve the later lock
selection for this specific workload. Each lock is evaluated
for a few different contention levels, resulting in a set of
lines, one for each CLoF lock, mapping contention levels to
throughput (as depicted in Figure 9, Section 5). We call this
procedure the scripted benchmark.

5In a scenario with a high number of combinations, one can use pre-selection
heuristics (possibly based on the results reported in Figure 3) to reduce the
size of the search space before performing the actual lock generation.

Selection policy. Once the benchmark is complete, we
need to rank the locks and select the best. The efficiency
of CLoF locks differ for different number of threads. We
observe that for a fixed number of levels, no CLoF lock com-
bination outperforms all the others in all contention levels.
Therefore, we define two selection policies (the last step in
Figure 5): (1) rank with the weighted average throughput
among all contention levels, favoring locks performing well
at high contention; and (2) rank with the inverse weighted
average throughput among all contention levels, favoring
locks performing well at low contention. Taking the first for
(1) gives us the CLoF HC-best lock (for High Contention),
while taking the first for (2) gives us the CLoF LC-best (for
Low Contention). Additionally, for informative purpose, we
also select the last for (1), giving us the CLoF worst lock.

In the next section, our evaluation shows that in general,
both HC-best and LC-best locks outperforms state-of-the-art
locks such as HMCS. In some cases, the HC-best lock trades
a moderate performance loss at low contention for a strong
performance gain at high contention. On the other hand, LC-
best has moderate performance gains across all contention
scenarios. The scripted benchmark outputs both HC-best and
LC-best locks together with their respective performance,
and it is up to the CLoF user to manually choose between
them according to its use case. The selection policy can be
further customized by the user if necessary.

5 Evaluation
In this section, we evaluate CLoF on two different architec-
tures to show the following: the CLoF workflow (Figure 5)
is practical and is able to find best CLoF locks for different
platforms; the selection policies are effective in optimizing
CLoF for different contention scenarios; level tuning allows
improving performance; in each platform, the best CLoF lock
is composed of different basic locks; and the best CLoF locks
outperform the state-of-the-art NUMA-aware locks for most
contention scenarios.

5.1 Experimental Setup
5.1.1 Hardware and Software. We evaluate CLoF on the
following platforms:

x86: a GIGABYTE R182-Z91-00 server [16] equipped
with 2 EPYC 7352 processors, each has 24 cores [2],
totaling 48 cores (96 hyperthreads).

Armv8: aHuaweiTaiShan 200 (Model 2280) server [21]
equipped with 2Kunpeng 920–6426 processors, each
has 64 cores [20], totaling 128 cores (no hyperthread).

On these servers, we installed Ubuntu 18.04.5 LTS, with
the 5.4.0 Linux kernel. We reproduced similar results on
OpenEuler 20.03 LTS. To ensure stable results, we (1) pin
threads to CPUs, (2) set the operating CPU frequency to a
constant value, (3) disable IRQ balancing, (4) disable NUMA
balancing, and (5) isolate the CPUs running the benchmarks

860

(only a single CPU, responsible to run all the other tasks of
the system, is not marked as “isolated” in the kernel boot
arguments; this CPU is then not used by the benchmarks).

5.1.2 Benchmarks. Our evaluation is based on two well-
known concurrent benchmarks: LevelDB and Kyoto Cabinet.
LevelDB [9] is a storage library written by Google that sup-
ports concurrent accesses. We use its “readrandom” bench-
mark, which is often used in the literature to evaluate the
performance of locks [11, 13, 24]. Kyoto Cabinet [27] is a li-
brary of parallel database routines also used in several prior
works [11, 14, 32]. Importantly, we use LevelDB within the
scripted benchmark (Section 4.3) to find the best CLoF locks,
and we use Kyoto Cabinet as a control benchmark to cross-
validate the performance of the best CLoF locks.

Both benchmarks can be configured for a fixed duration
(in seconds), number of threads, and number of runs (#runs).
The benchmarks return the throughput (executed operations
per second) of each run.

We interpose benchmark calls to pthread functions with
LD_PRELOAD in order to replace the lock implementation
without having to recompile the benchmarks — as similarly
done in other works [17].

5.2 Instantiating the CLoF Workflow
We now apply the approach described in Section 4.3, running
the scripted benchmark (using LevelDB) to find the best lock
among all possible combinations of NUMA-oblivious locks.
The scripted benchmark evaluates all the generated locks
(#runs = 1 and duration = 1s). As baseline, we use HMCS
configured with the same hierarchy as CLoF.

5.2.1 Tuning Points. We explore both tuning points out-
lined by Figure 5, varying the number of levels in the hierar-
chy configuration and trying both selection policies (HC/LC).
We group the results by number of levels.

Selecting the hierarchy levels is a trade-off between over-
head and locality: skipping a level reduces the number of
basic locks to acquire/release at the cost of missing locality
opportunities of this level. The user may tune the discovered
hierarchy accordingly (see Figure 5). We use the following
notation for identifying a specific CLoF lock. Considering
the core, cache-group, NUMA-node, package and system
levels — in this order — we denote a CLoF lock with 𝑛 levels
by a sequence of 𝑛 abbreviations, where tkt, mcs, clh and
hem respectively denote Ticketlock, MCS lock, CLH lock and
Hemlock. The sequence only considers the 𝑛 levels in the
lock’s hierarchy configuration. For example, hem-hem-mcs-
clh refers, in the x86 4-level hierarchy below, to the 4-level
CLoF lock composed of Hemlocks at the core and cache-
group levels, MCS at the NUMA-node level and CLH at the
system level; there is no package level in that configuration.

4-level locks. We start by finding the best CLoF locks
with the following 4-level hierarchies:

• x86: core, cache, numa, system;
• Armv8: cache, numa, package, system.

On x86, we skip the package level, as its processor model
has only one NUMA node per package. On Armv8, we skip
the core level as there is no hyperthreading, i.e., there is 1
CPU per core. Considering all 𝑁 = 4 basic locks (i.e., Ticket-
lock, CLH, MCS and Hemlock) and𝑀 = 4 levels, the number
of combinations is 𝑁𝑀 = 44 = 256 on both platforms.

Figures 9a and 9b respectively report the performance of
these 256 locks for x86 and Armv8. Due to the large number
of locks, we highlight HMCS (as baseline), the HC-best, the
LC-best and the worst (all found with the selection policy
described in Section 4.3). The remaining locks are grouped
in the Others category, which forms a beam of gray lines.
In relation to HMCS on x86, HC-best trades a moderate

performance loss at low contention (e.g., -5% with 8 threads)
for a strong performance gain at high contention (e.g., 47%
with 95 threads). On the other hand, LC-best has moderate
performance gains across all contention scenarios, ranging
on Armv8 from 3% (1 and 4 threads) to 15% (127 threads).
Finally, note that the best CLoF locks on each architec-

ture are composed of different basic locks. For example, on
x86, the HC-best is composed of Hemlock, CLH and MCS,
whereas on Armv8, it is composed of Ticketlock and CLH.

3-level locks. Next, we find the best CLoF locks for each
platform considering the following 3-level hierarchies:

• x86: cache, package, system;
• Armv8: cache, numa, system.

We skip the package level on Armv8 since the difference
in performance between system and package is thin (see
Figure 1b and Table 2). On x86, we skip the core level as many
applications disable the usage of hyperthreads altogether.

We repeat the same workflow as in the 4-level case. With
𝑀 = 3 levels the number of combinations is 𝑁𝑀 = 43 = 64.
Figures 9c and 9d show the results obtained on each platform.
Overall the performance gains observed are similar to the
4-level case. Nevertheless, one interesting result is that, on
Armv8, both selection policies find the same best lock.

The basic lock composing the best CLoF locks are different
from the 4-level case on both platforms. For example, on x86,
the HC-best lock is now composed of Hemlock, Ticketlock
and MCS, whereas on Armv8, the system level is Ticketlock
instead of CLH.

5.2.2 Composition Analysis of CLoF Locks. Each best
CLoF lock found in Figure 9 has its own distinct composition.
Every component has an impact on the overall performance
of the CLoF lock. We now discuss two cases, using the per-
formance reported in Figure 9.

Ticketlock in the NUMA level on Armv8. We observe
that the worst CLoF lock uses the Ticketlock at the NUMA
level with both 3-level and 4-level. Recall that, when run in
isolation in the NUMA cohort, Ticketlock yields almost half

861

14 8 16 24 32 48 64 95
Number of threads

0.00

0.25

0.50

0.75

1.00

1.25

1.50

M
ed

ia
n

th
ro

ug
hp

ut
(i

te
r.

/µ
s)

CLoF HC-best (hem-hem-mcs-clh)

CLoF LC-best (tkt-tkt-mcs-mcs)

HMCS〈4〉
CLoF worst (mcs-clh-tkt-mcs)

Others (253 locks)

(a) x86, 4-level hierarchy: core-cache-numa-system.

148 162432 48 64 95 127
Number of threads

0.00

0.25

0.50

0.75

1.00

1.25

1.50

M
ed

ia
n

th
ro

ug
hp

ut
(i

te
r.

/µ
s)

CLoF HC-best (tkt-clh-clh-clh)

CLoF LC-best (tkt-clh-tkt-tkt)

HMCS〈4〉
CLoF worst (mcs-tkt-tkt-tkt)

Others (253 locks)

(b) Armv8, 4-level hierarchy: cache-numa-package-system.

14 8 16 24 32 48 64 95
Number of threads

0.00

0.25

0.50

0.75

1.00

1.25

M
ed

ia
n

th
ro

ug
hp

ut
(i

te
r.

/µ
s)

CLoF HC-best (hem-mcs-tkt)

CLoF LC-best (tkt-mcs-mcs)

HMCS〈3〉
CLoF worst (clh-tkt-tkt)

Others (61 locks)

(c) x86, 3-level hierarchy: cache-numa-system.

148 162432 48 64 95 127
Number of threads

0.00

0.25

0.50

0.75

1.00

1.25

1.50

M
ed

ia
n

th
ro

ug
hp

ut
(i

te
r.

/µ
s)

CLoF HC/LC-best (tkt-clh-tkt)

HMCS〈3〉
CLoF worst (mcs-tkt-hem)

Others (62 locks)

(d) Armv8, 3-level hierarchy: cache-numa-system.

Figure 9. LevelDB evaluation on x86 and Armv8 comparing all CLoF-generated locks with 3 and 4 levels against HMCS
implementations with equivalent hierarchy. CLoF locks using hem use the CTR optimization only on x86.

the performance of other locks (see Figure 3). In fact, if we
replace the NUMA level of any CLoF lock with Ticketlock,
the performance dramatically drops at 32 threads — similarly
to the worst lock.

Core level in x86. The 4-level results (Figure 9a) show
that the beam of gray lines splits at 64 threads into two
groups, one above HMCS and another below. The reason
is related to core-level lock: CLoF locks with Hemlock or
Ticketlock have higher performance than HMCS, whereas
those with MCS or CLH have lower performance. Figure 3
shows that, in isolation, Hemlock and Ticketlock yield a
slightly better performance than MCS and CLH. Between
Hemlock and Ticketlock, however, the difference is less clear.

Other cases. The reason why a lock is part of a best CLoF
lock is not always clear. Because of the interplay between
different levels and locks used, the results obtainedwith basic
locks in isolation (Figure 3) can be diminished or exacerbated
when the locks are a part of a CLoF lock.

5.2.3 Fairness. We evaluated the fairness of all the locks
with a slightly modified LevelDB benchmark to report per-
thread results. As expected, the fairness of all CLoF-locks
closely matches the fairness obtained with HMCS in all cases
since CLoF employs the same keep_local strategy as HMCS.
For the sake of space, we do not detail these results further.

5.3 The Best CLoF Locks in Action
In this section, we pick the best CLoF locks (for 3/4 lev-
els, x86/Armv8) and evaluate them thoroughly (#runs = 3
and duration = 10s) on both platforms; this time with both
LevelDB and Kyoto Cabinet benchmarks. We only consider
locks selected with the LC policy, as they yield more bal-
anced gains than HC ones across all contention levels. We
use the notation CLoF⟨𝑛⟩-x86 and CLoF⟨𝑛⟩-Arm to refer
to the LC-best CLoF lock with 𝑛 levels on x86 and Armv8
respectively — CLoF⟨𝑛⟩ refers to the CLoF lock of both plat-
forms. We start by comparing the best CLoF locks against
each other. Then, we compare them against state-of-the-art
NUMA-aware locks. Results are showed together in Figure 10.
Since the results have only a small variance, we report the
median throughput.

5.3.1 Comparing Best CLoF Locks.

3-level against 4-level — x86. CLoF⟨3⟩-x86 matches the
performance of CLoF⟨4⟩-x86 when only one hyperthread per
core is used (i.e., with at most 48 threads). With more than
48 threads, CLoF⟨4⟩-x86 experiences a great performance
boost of about 23% on both LevelDB and Kyoto Cabinet.

3 levels against 4 levels — Armv8. The Kyoto Cabinet
benchmark shows that CLoF⟨3⟩-Arm is better than CLoF⟨4⟩-
Arm from low to mid contention by around 8%. At high con-
tention, CLoF⟨4⟩-Arm matches CLoF⟨3⟩-Arm performance.

862

14 8 16 24 32 48 64 95
Number of threads

0.00

0.25

0.50

0.75

1.00

1.25

M
ed

ia
n

th
ro

ug
hp

ut
(i

te
r.

/µ
s)

LevelDB - x86

148 16 24 32 48 64 95 127
Number of threads

0.0

0.5

1.0

1.5

M
ed

ia
n

th
ro

ug
hp

ut
(i

te
r.

/µ
s)

LevelDB - Armv8

14 8 16 24 32 48 64 95
Number of threads

0.00

0.02

0.04

0.06

0.08

0.10

M
ed

ia
n

th
ro

ug
hp

ut
(i

te
r.

/µ
s)

Kyoto Cabinet - x86

148 16 24 32 48 64 95 127
Number of threads

0.00

0.02

0.04

0.06

0.08

0.10

M
ed

ia
n

th
ro

ug
hp

ut
(i

te
r.

/µ
s)

Kyoto Cabinet - Armv8

CLoF〈3〉-x86 (tkt-mcs-mcs)

CLoF〈3〉-Arm (tkt-clh-tkt)

CLoF〈4〉-x86 (tkt-tkt-mcs-mcs)

CLoF〈4〉-Arm (tkt-clh-tkt-tkt)

HMCS〈4〉
CNA

ShflLock

Figure 10. Evaluation on LevelDB and Kyoto Cabinet on x86 and Armv8. LC-best CLoF locks of each platform and hierarchy
with 3 and 4 levels are compared to state-of-the-art locks, i.e., HMCS⟨4⟩ (with equivalent hierarchy), CNA and ShflLock.

We conclude that the fourth level does not always improve
the overall performance, possibly due to the rather small
latency difference between intra-package NUMA nodes and
extra-packages NUMA nodes (Figure 1b, Table 2).

Best lock cross platform. Figure 10 shows how locks
picked as best for one platform perform in another. When a
CLoF lock for Armv8 is used in x86 (or vice versa), it typically
deteriorates performance, yielding results closer to HMCS.
We conclude that every platform needs a tailored lock to
exploit all its performance potential.

5.3.2 Comparing Against the State of the Art.

HMCS. In most scenarios showed by Figure 10, CLoF⟨4⟩
clearly outperforms HMCS⟨4⟩; note they are configured with
the same hierarchy levels. For example, on x86 with Lev-
elDB, CLoF⟨4⟩-x86 outperforms HMCS⟨4⟩ with 8, 32 and 95
threads by 5%, 15% and 33% respectively.
Likewise, on Armv8 with Kyoto Cabinet, CLoF⟨4⟩-Arm

outperformsHMCS⟨4⟩with 8, 32 and 127 threads by 11%, 10%
and 8% respectively. In the highly contended Kyoto Cabinet
on x86, CLoF⟨4⟩-x86 and HMCS⟨4⟩ display a performance

increase with more than 48 threads. That is caused by the
activation of the core level lock, which is only present in
HMCS⟨4⟩ and CLoF⟨4⟩-x86.

CNA and ShflLock. In general, ShflLock performs com-
parably to CNA. Both locks do not scale with increasing
contention and are greatly outperformed by our CLoF⟨4⟩
locks: up to 139% on x86 and 109% on Armv8. This is because
CNA and ShflLock are not aware of levels other than NUMA
level (and system level). Whether multi-level extensions of
these locks are possible is an open question.

6 Related Work
In Section 2, we already covered a few basic and NUMA-
aware spinlocks. Herlihy and Shavit’s textbook [19] is a good
reference for further basic spinlocks. In this section, we focus
on the differences between CLoF and previous NUMA-aware
locks and discuss possible extensions.

NUMA-aware locks. NUMA-aware locks try to keep lock
handovers local to the NUMA node of the lock owner, mak-
ing better use of the cache hierarchy [5–7, 10–12, 15, 24, 25,

863

30, 35]. Recently, Dice and Kogan [11] presented the CNA
lock, which is a modification of MCS lock that supports 2-
level NUMA-architectures. A key aspect of CNA is its small
memory footprint: instead of keeping a hierarchy of locks,
the lock owner scans the MCS queue and reorders waiting
threads such that threads in the same NUMA node are fa-
vored when passing the lock. Since January 2019, there is an
ongoing effort to replace MCS lock with CNA in Linux qspin-
lock6. CNA neither supports multi-level NUMAs nor exploits
level-heterogeneity, thus missing out on large performance
gains in modern architectures.

Kashyap et al. [24] propose a family of spinlocks and mu-
texes based on a strategy similar to CNA: the MCS queue
is shuffled according to a policy, which among other things,
can prioritize NUMA-node proximity. Unfortunately, their
shuffling policy does not account for deep NUMA hierar-
chies, nor they provide any guidelines how to implement
such a multi-level policy.
The works most related to CLoF are the HMCS lock by

Chabbi et al. [6] and the lock cohorting technique introduced
by Dice et al. [15] — see Section 2. The HMCS lock achieves
building the MCS lock hierarchy with a semantic recursion,
whereas CLoF employs a syntactic recursion. The cohorting
technique cannot be easily extended to support multi-level
NUMA systems and requires the implementations of basic
locks to be modified/adapted.

Correctness on weak memory models. With the excep-
tion of the HMCS lock, previous work does not consider
the correctness on WMMs, leaving the task of placing bar-
riers as an exercise to the readers. Placing barriers can in-
fluence the performance of applications [29] and, more im-
portantly, can break the correctness [32]. For example, Ober-
hauser et al. [33] have recently shown that the barriers pre-
sented in the HMCS paper are insufficient for Arm.
In this work, we propose using a modular way to show

correctness: simpler spinlocks are easier to be verified on
WMMs and model checkers can be used to correctly place
barriers on them [32]. By composing simpler but correct
locks with CLoF, the resulting NUMA-aware locks are cor-
rect by construction.

Fast-path extensions. Since often only a single thread
tries to acquire a spinlock, slow path optimizations should
minimally affect the critical path for a single thread. Dice and
Kogan [12], for example, study low contention scenarios on
x86 and show how the addition of a simple test-and-set lock
(TAS) as fast path can increase performance compared to
previous NUMA-aware locks. Kashyap et al. [24] also provide
a similar fast path for their ShflLock. AHMCS [7] proposes
a more elaborate fast path that accounts for low and mid
contention scenarios by allowing threads to bypass parts
of the tree and directly acquire locks from higher levels.

6https://lwn.net/Articles/852138/

Fast-path extensions are a topic orthogonal to our work.
Extending CLoF with the same TAS approach as ShflLock is
rather simple. The investigation of bypassing strategies for
CLoF is left as our future work.

7 Conclusion
Efficient NUMA-aware locks must be tailored to target multi-
level NUMA systems; they must fully leverage the deep
NUMA hierarchy as well as platform-specific optimizations.
Designing complex multi-level heterogeneous NUMA-aware
locks and guaranteeing they are correct on WMMs is very
challenging. CLoF tackles this challenge in a divide-and-
conquer fashion. With detailed hierarchy information, CLoF
composes NUMA-oblivious spinlocks — which are simpler to
be verified on WMMs and can more easily exploit platform-
specific optimizations — into many correct by construction
NUMA-aware locks. With a user-provided policy, CLoF then
selects the best performing lock for the target NUMA system.

The non-uniform access latencies observed in large NUMA
systems can also be observed in modern big.LITTLE architec-
tures, widely employed in handheld devices. Such systems
combine slow but power efficient cores with fast but less
efficient cores. These two groups of cores form cohorts with
different communication trade-offs. Besides the already men-
tioned future work, we plan to to investigate the applicability
of CLoF in such systems.

Acknowledgments
We sincerely thank our shepherd Christopher Rossbach and
our anonymous reviewers for their insightful comments and
suggestions. We thank Dave Dice for making us aware of
the Hemlock algorithm. We also thank Lilith Oberhauser
for implementing and verifying the HMCS lock used in this
work. Finally, we thank Viktor Vafeiadis and our colleagues
of Huawei DRC and OS Kernel lab for reviewing this work.

References
[1] A. Agarwal and M. Cherian. 1989. Adaptive Backoff Synchronization

Techniques. SIGARCH Comput. Archit. News 17, 3 (April 1989), 396–406.
https://doi.org/10.1145/74926.74970

[2] AMD. [n.d.]. 2nd Gen AMD EPYC™ 7352 | Server Processor | AMD.
https://www.amd.com/en/products/cpu/amd-epyc-7352. Accessed:
2021-05-07.

[3] AMD. 2021. The 2nd Gen AMD EPYC 7002 Series Processors. https:
//www.amd.com/en/processors/epyc-7002-series.

[4] Krunal Bauskar. 2020. ARM’s LSE (for atomics) and MySQL. https:
//aws.amazon.com/ec2/graviton.

[5] Irina Calciu, Dave Dice, Yossi Lev, Victor Luchangco, Virendra J.
Marathe, and Nir Shavit. 2013. NUMA-Aware Reader-Writer Locks.
In Proceedings of the 18th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (Shenzhen, China) (PPoPP ’13). As-
sociation for Computing Machinery, New York, NY, USA, 157–166.
https://doi.org/10.1145/2442516.2442532

[6] Milind Chabbi, Michael Fagan, and John Mellor-Crummey. 2015. High
Performance Locks for Multi-Level NUMA Systems. In Proceedings of
the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel

864

https://lwn.net/Articles/852138/
https://doi.org/10.1145/74926.74970
https://www.amd.com/en/products/cpu/amd-epyc-7352
https://www.amd.com/en/processors/epyc-7002-series
https://www.amd.com/en/processors/epyc-7002-series
https://aws.amazon.com/ec2/graviton
https://aws.amazon.com/ec2/graviton
https://doi.org/10.1145/2442516.2442532

Programming (San Francisco, CA, USA) (PPoPP 2015). Association for
Computing Machinery, New York, NY, USA, 215–226. https://doi.org/
10.1145/2688500.2688503

[7] Milind Chabbi and John Mellor-Crummey. 2016. Contention-
Conscious, Locality-Preserving Locks. SIGPLAN Not. 51, 8, Article 22
(Feb. 2016), 14 pages. https://doi.org/10.1145/3016078.2851166

[8] Jonathan Corbet. 2014. MCS locks and qspinlocks. https://lwn.net/
Articles/590243/.

[9] Jeffrey Dean and Sanjay Ghemawat. 2021. LevelDB. https://github.
com/google/leveldb.

[10] Dave Dice. 2017. Malthusian Locks. In Proceedings of the Twelfth Euro-
pean Conference on Computer Systems (Belgrade, Serbia) (EuroSys ’17).
Association for Computing Machinery, New York, NY, USA, 314–327.
https://doi.org/10.1145/3064176.3064203

[11] Dave Dice and Alex Kogan. 2019. Compact NUMA-Aware Locks.
In Proceedings of the Fourteenth EuroSys Conference 2019 (Dresden,
Germany) (EuroSys ’19). Association for Computing Machinery, New
York, NY, USA, Article 12, 15 pages. https://doi.org/10.1145/3302424.
3303984

[12] Dave Dice and Alex Kogan. 2021. Fissile Locks. In Networked Systems,
Chryssis Georgiou and Rupak Majumdar (Eds.). Springer International
Publishing, Cham, 192–208.

[13] Dave Dice and Alex Kogan. 2021. Hemlock: Compact and Scalable
Mutual Exclusion. In Proceedings of the 33rd ACM Symposium on Paral-
lelism in Algorithms and Architectures (Virtual Event, USA) (SPAA ’21).
Association for Computing Machinery, New York, NY, USA, 173–183.
https://doi.org/10.1145/3409964.3461805

[14] Dave Dice, Alex Kogan, Yossi Lev, Timothy Merrifield, and Mark Moir.
2014. Adaptive Integration of Hardware and Software Lock Elision
Techniques. In Proceedings of the 26th ACM Symposium on Parallelism
in Algorithms and Architectures (Prague, Czech Republic) (SPAA ’14).
Association for Computing Machinery, New York, NY, USA, 188–197.
https://doi.org/10.1145/2612669.2612696

[15] Dave Dice, Virendra J Marathe, and Nir Shavit. 2012. Lock cohorting: a
general technique for designing NUMA locks. ACM SIGPLAN Notices
47, 8 (2012), 247–256.

[16] GIGABYTE. [n.d.]. R182-Z91 (rev. 100) | Rack Servers - GIGABYTE
Global. https://www.gigabyte.com/Rack-Server/R182-Z91-rev-100.
Accessed: 2021-05-07.

[17] Hugo Guiroux, Renaud Lachaize, and Vivien Quéma. 2016. Multicore
Locks: The Case is Not Closed Yet. In Proceedings of the 2016 USENIX
Conference on Usenix Annual Technical Conference (Denver, CO, USA)
(USENIX ATC ’16). USENIX Association, USA, 649–662.

[18] Marc Hamilton. 1999. Software development: building reliable systems.
Prentice Hall Professional, USA.

[19] Maurice Herlihy and Nir Shavit. 2011. The art of multiprocessor pro-
gramming. Morgan Kaufmann, USA.

[20] HiSilicon. [n.d.]. Kunpeng 920-6426 - HiSilicon - WikiChip. https:
//en.wikichip.org/wiki/hisilicon/kunpeng/920-6426. Accessed: 2021-
05-07.

[21] Huawei. [n.d.]. 2280 Balanced Model - Huawei Enterprise. https://e.
huawei.com/uk/products/servers/taishan-server/taishan-2280-v2. Ac-
cessed: 2021-05-07.

[22] Huawei. 2019. Huawei Unveils Industry’s Highest-Performance ARM-
based CPU. https://www.huawei.com/en/news/2019/1/huawei-
unveils-highest-performance-arm-based-cpu.

[23] Jeff Defilippi. 2017. Introducing AMBA 5 CHI protocol enhancements:
Specification now available. https://community.arm.com/developer/ip-
products/system/b/soc-design-blog/posts/introducing-new-amba-
5-chi-protocol-enhancements.

[24] Sanidhya Kashyap, Irina Calciu, Xiaohe Cheng, Changwoo Min, and
Taesoo Kim. 2019. Scalable and Practical Locking with Shuffling. In
Proceedings of the 27th ACM Symposium on Operating Systems Principles
(Huntsville, Ontario, Canada) (SOSP ’19). Association for Computing

Machinery, New York, NY, USA, 586–599. https://doi.org/10.1145/
3341301.3359629

[25] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. 2017. Scalable
NUMA-aware Blocking Synchronization Primitives. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17). USENIX Association,
Santa Clara, CA, 603–615. https://www.usenix.org/conference/atc17/
technical-sessions/presentation/kashyap

[26] Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019.
Model Checking for Weakly Consistent Libraries. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation (Phoenix, AZ, USA) (PLDI 2019). Association for
Computing Machinery, New York, NY, USA, 96–110. https://doi.org/
10.1145/3314221.3314609

[27] FAL Labs. 2011. Kyoto Cabinet: A straightforward implementation of
DBM. http://fallabs.com/kyotocabinet.

[28] Leslie Lamport. 2002. Specifying systems: the TLA+ language and
tools for hardware and software engineers. Addison-Wesley Longman
Publishing Co., Inc., USA.

[29] Nian Liu, Binyu Zang, and Haibo Chen. 2020. No Barrier in the
Road: A Comprehensive Study and Optimization of ARM Barriers.
In Proceedings of the 25th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (San Diego, California) (PPoPP ’20).
Association for Computing Machinery, New York, NY, USA, 348–361.
https://doi.org/10.1145/3332466.3374535

[30] Victor Luchangco, Dan Nussbaum, and Nir Shavit. 2006. AHierarchical
CLH Queue Lock. In Euro-Par 2006 Parallel Processing, Wolfgang E.
Nagel, Wolfgang V. Walter, and Wolfgang Lehner (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 801–810.

[31] John M. Mellor-Crummey and Michael L. Scott. 1991. Algorithms for
Scalable Synchronization on Shared-Memory Multiprocessors. ACM
Trans. Comput. Syst. 9, 1 (Feb. 1991), 21–65. https://doi.org/10.1145/
103727.103729

[32] Jonas Oberhauser, Rafael Lourenco de Lima Chehab, Diogo Behrens,
Ming Fu, Antonio Paolillo, Lilith Oberhauser, Koustubha Bhat,
Yuzhong Wen, Haibo Chen, Jaeho Kim, and Viktor Vafeiadis. 2021.
VSync: Push-Button Verification and Optimization for Synchroniza-
tion Primitives on Weak Memory Models. In Proceedings of the 26th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (Virtual, USA) (ASPLOS 2021).
Association for Computing Machinery, New York, NY, USA, 530–545.
https://doi.org/10.1145/3445814.3446748

[33] Jonas Oberhauser, Lilith Oberhauser, Antonio Paolillo, Diogo Behrens,
Ming Fu, and Viktor Vafeiadis. 2021. Verifying and Optimizing the
HMCS Lock for Arm Servers. In Networked Systems. Springer Interna-
tional Publishing.

[34] Sean Peters, Adrian Danis, Kevin Elphinstone, and Gernot Heiser. 2015.
For a Microkernel, a Big Lock Is Fine. In Proceedings of the 6th Asia-
Pacific Workshop on Systems (Tokyo, Japan) (APSys ’15). Association
for Computing Machinery, New York, NY, USA, Article 3, 7 pages.
https://doi.org/10.1145/2797022.2797042

[35] Zoran Radovic and Erik Hagersten. 2003. Hierarchical Backoff Locks
for Nonuniform Communication Architectures. In Proceedings of the
9th International Symposium on High-Performance Computer Architec-
ture (HPCA ’03). IEEE Computer Society, USA, 241.

865

https://doi.org/10.1145/2688500.2688503
https://doi.org/10.1145/2688500.2688503
https://doi.org/10.1145/3016078.2851166
https://lwn.net/Articles/590243/
https://lwn.net/Articles/590243/
https://github.com/google/leveldb
https://github.com/google/leveldb
https://doi.org/10.1145/3064176.3064203
https://doi.org/10.1145/3302424.3303984
https://doi.org/10.1145/3302424.3303984
https://doi.org/10.1145/3409964.3461805
https://doi.org/10.1145/2612669.2612696
https://www.gigabyte.com/Rack-Server/R182-Z91-rev-100
https://en.wikichip.org/wiki/hisilicon/kunpeng/920-6426
https://en.wikichip.org/wiki/hisilicon/kunpeng/920-6426
https://e.huawei.com/uk/products/servers/taishan-server/taishan-2280-v2
https://e.huawei.com/uk/products/servers/taishan-server/taishan-2280-v2
https://www.huawei.com/en/news/2019/1/huawei-unveils-highest-performance-arm-based-cpu
https://www.huawei.com/en/news/2019/1/huawei-unveils-highest-performance-arm-based-cpu
https://community.arm.com/developer/ip-products/system/b/soc-design-blog/posts/introducing-new-amba-5-chi-protocol-enhancements
https://community.arm.com/developer/ip-products/system/b/soc-design-blog/posts/introducing-new-amba-5-chi-protocol-enhancements
https://community.arm.com/developer/ip-products/system/b/soc-design-blog/posts/introducing-new-amba-5-chi-protocol-enhancements
https://doi.org/10.1145/3341301.3359629
https://doi.org/10.1145/3341301.3359629
https://www.usenix.org/conference/atc17/technical-sessions/presentation/kashyap
https://www.usenix.org/conference/atc17/technical-sessions/presentation/kashyap
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/3314221.3314609
http://fallabs.com/kyotocabinet
https://doi.org/10.1145/3332466.3374535
https://doi.org/10.1145/103727.103729
https://doi.org/10.1145/103727.103729
https://doi.org/10.1145/3445814.3446748
https://doi.org/10.1145/2797022.2797042

	Abstract
	1 Introduction
	2 Background
	2.1 NUMA-oblivious Spinlocks
	2.2 NUMA-aware Locks
	2.3 Heterogeneous NUMA-aware Locks

	3 A Case for Multi-Heterogeneous Levels
	3.1 Deep NUMA Hierarchies
	3.2 Potential of Heterogeneous Locks
	3.3 Correctness of Complex Locks on WMMs
	3.4 In Search for a Composable Approach

	4 The Compositional Lock Framework
	4.1 The Lock Generator
	4.2 CLoF Correctness
	4.3 Finding the Best CLoF Lock

	5 Evaluation
	5.1 Experimental Setup
	5.2 Instantiating the CLoF Workflow
	5.3 The Best CLoF Locks in Action

	6 Related Work
	7 Conclusion
	References

