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Concurrency is everywhere

Modern operating systems,
databases & applications resort to
multi-core concurrency to
achieve high performance.
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Challenge: exploiting the deep hierarchy of large NUMA machines

Core distance affects shared-memory communication performance
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Challenge: exploiting the deep hierarchy of large NUMA machines

Discovering the hierarchy with a pair of threads incrementing a shared counter

x86 server, 2 packages, L3 caches & hyperthreading
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Challenge: exploiting the deep hierarchy of large NUMA machines

HMCS performs better when it sees the deep hierarchy
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Challenge: exploiting the deep hierarchy of large NUMA machines

Different platforms may have different deep hierarchies
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Challenge: locks perform differently according to scheduling & architecture

Comparing locks across different cohorts

x86 server — execution of classic locks on isolated cohorts
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Challenge: locks perform differently according to scheduling & architecture

Comparing locks across different architectures
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Challenge: locks perform differently according to scheduling & architecture

Potential performance benefits of heterogeneity
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Challenge: verifying complex locks
We cannot model check the full hierarchy on WMMs

> Showing lock correctness is challenging — especially on different memory models
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» Order of operations in concurrent code cannot be compromised
» Barriers must be used carefully to guarantee correct & efficient code

> Model checkers — e.g., GenMC — can verify correctness of simple locks. ..
But too slow for a large multi-level lock

Correctness on WMMs:
Lock correctness is critical but verifying it is very expensive.
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Our contributions: CLoF
A Compositional Lock Framework for Multi-level NUMA Systems

We propose CLoF, a framework to generate locks:
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Our contributions: CLoF

A Compositional Lock Framework for Multi-level NUMA Systems

We propose CLoF, a framework to generate locks:

> that support an arbitrary hierarchy with multiple levels;

> in each level, the lock implementation may be different, levels are heterogeneous;

» the locks are correct-by-construction on Weak Memory Models.

NUMA-aware locks Correctness  Heterogeneity ~ Multi-Level
on WMMs

lock cohorting PPoPP'12 X X

HMCS PPoPP’15 xt X

CNA lock EuroSys'19 X X X

ShflLock SOSP'19 X X X

CLoF SOSP’'21

1|nsufficient barriers, fixed in Oberhauser et al., Verifying and Optimizing the HMCS Lock for Arm Servers, NETYS'2021. 5/10



The CLoF workflow

A user's perspective
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memory hierarchy
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Composing CLoF locks

Two NUMA-node example
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CLoF correctness
Can we model check the CLoF locks?

Model Checker
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Select the best CLoF(4) lock

Generating/evaluating 256 CLoF locks and selecting the best

x86 server — LevelDB readrandom benchmark
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Conclusion and future work

» CLoF locks

> fully leverage deep hierarchies and heterogeneity for good performance gains
> are correct-by-construction on Weak Memory Models

10/10



Conclusion and future work

» CLoF locks

> fully leverage deep hierarchies and heterogeneity for good performance gains
> are correct-by-construction on Weak Memory Models

Median throughput (iter./ps)

1.50

1.00

0.75

0.50

0.25

0.00

LevelDB readrandom benchmark, Arm server

\'—o—-o\. )
/x\i "\x—x\
x
i
l. .,
L S—
3 ;Q;\ \
—r + + +
— .
148 16 24 32 48 64 95 127

Number of threads
—e— CLoF(l)-Arm  —+— CNA
—u— HMCS(4) —+— ShflLock
—=— MCS

10/10



Conclusion and future work

» CLoF locks
> fully leverage deep hierarchies and heterogeneity for good performance gains
> are correct-by-construction on Weak Memory Models
LevelDB readrandom benchmark, Arm server

> Don’t miss the details!

> tuning points H“’“ / ————e—
> platform-specific optimizations S125 - —
> analysis of lock combinations S /'%\
. 3 i S—
80 ()~ L
v S ———
E 0.50 »
:
=025

148 16 24 32 48 64 95 127
Number of threads

—e— CLoF(1)-Arm  —+— CNA
—#— HMCS(1) +— ShflLock
—— MCS

10/10



Conclusion and future work

» CLoF locks

> fully leverage deep hierarchies and heterogeneity for good performance gains
> are correct-by-construction on Weak Memory Models

> Donlt miSS the details! LevelDB readrandom benchmark, Arm server

P~ o

L —

> tuning points

> platform-specific optimizations
> analysis of lock combinations
>

» Future work

> CLoF in the Linux kernel
> bIngTTLE pIatforms 0.00

Median throughput (iter./ps)
o

148 16 24 32 48 64 95 127
Number of threads
—e— CLoF(l)-Arm  —+— CNA
HMCS (1) +— ShflLock
—=— MCS

10/10



Thank you

antonio.paolillo@huawei.com



