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Challenge: exploiting the deep hierarchy of large NUMA machines
Core distance affects shared-memory communication performance
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Challenge: exploiting the deep hierarchy of large NUMA machines
Discovering the hierarchy with a pair of threads incrementing a shared counter
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Challenge: exploiting the deep hierarchy of large NUMA machines
HMCS performs better when it sees the deep hierarchy
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Challenge: exploiting the deep hierarchy of large NUMA machines
Different platforms may have different deep hierarchies
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Challenge: locks perform differently according to scheduling & architecture
Comparing locks across different cohorts

x86 server — execution of classic locks on isolated cohorts
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Challenge: locks perform differently according to scheduling & architecture
Potential performance benefits of heterogeneity

Heterogeneity :
Locks perform differently according
to levels, architectures & platforms.

LevelDB readrandom benchmark, x86 server
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Challenge: verifying complex locks
We cannot model check the full hierarchy on WMMs

Ï Showing lock correctness is challenging — especially on different memory models

Ï Weak Memory Models (WMMs) allow reorderings for optimization
Ï Order of operations in concurrent code cannot be compromised
Ï Barriers must be used carefully to guarantee correct & efficient code

Ï Model checkers – e.g., GenMC – can verify correctness of simple locks. . .
But too slow for a large multi-level lock

Correctness on WMMs:
Lock correctness is critical but verifying it is very expensive.
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Our contributions: CLoF
A Compositional Lock Framework for Multi-level NUMA Systems

We propose CLoF, a framework to generate locks:

Ï that support an arbitrary hierarchy with multiple levels;
Ï in each level, the lock implementation may be different, levels are heterogeneous;
Ï the locks are correct-by-construction on Weak Memory Models.

NUMA-aware locks Correctness Heterogeneity Multi-Level
on WMMs

lock cohorting PPoPP’12 7 3 7

HMCS PPoPP’15 71 7 3
CNA lock EuroSys’19 7 7 7
ShflLock SOSP’19 7 7 7
CLoF SOSP’21 3 3 3

1Insufficient barriers, fixed in Oberhauser et al., Verifying and Optimizing the HMCS Lock for Arm Servers, NETYS’2021.
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Composing CLoF locks

Two NUMA-node example

l0threads in
NUMA node 1

threads in
NUMA node 2

(BasicLocks) l ::= l0, l1, l2, . . .
(ClofLocks) L ::= l | CLoF(l,L)

Simplified algorithm
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CLoF correctness
Can we model check the CLoF locks?
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Select the best CLoF〈4〉 lock
Generating/evaluating 256 CLoF locks and selecting the best
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Conclusion and future work

Ï CLoF locks
Ï fully leverage deep hierarchies and heterogeneity for good performance gains
Ï are correct-by-construction on Weak Memory Models

Ï Don’t miss the details!
Ï tuning points
Ï platform-specific optimizations
Ï analysis of lock combinations
Ï . . .

Ï Future work
Ï CLoF in the Linux kernel
Ï big.LITTLE platforms
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