CLoF:
A Compositional Lock Framework for Multi-level NUMA Systems

Rafael Chehab Antonio Paolillo Diogo Behrens Ming Fu Hermann Hartig Haibo Chen

P 0Q9ODG@E
v (W), & i & v)

TECHNISCHE
@’é UNIVERSITAT

DRESDEN

October 29, 2021

Concurrency is everywhere

Modern operating systems,
databases & applications resort to
multi-core concurrency to
achieve high performance.

A _aflvcricos
2 opoK

PostgreSQL

1/10

Concurrency is everywhere Linux spinlock evolution

Modern operating systems, - Many-core NUMA System
databases & applications resort to CNA lock | Processor 1 3
H 46 atomics i Numal Numa2
multi-core concurrency to NUMA-awareness ' Corel Core5 i
achieve high performance. S0l | Coe2 Coeb |
gspinlock 7777 Core3 Core 7 |

26 atomics .\ Core 4 Core 8 3

a0 fairness, locality | 3

£ 1 | Processor 2 !
A M O I'I O D B 2008
Ticketlock N ;

4 atomics
fairness

Soeok @ =

PostgreSQL no fairness

1/10

Challenge: exploiting the deep hierarchy of large NUMA machines

Core distance affects shared-memory communication performance

Numa 1
Core 1

l Core 2
1 Core 3
3 Core 4

,,,

Numa 2

Core 5
Core 6
Core 7
Core 8

Many-core NUMA System

Processor 2

Numa 2

Core 9
Core 10
Core 11
Core 12

Numa 3
Core 13

Core 14
Core 15
Core 16

2/10

Challenge: exploiting the deep hierarchy of large NUMA machines

Core distance affects shared-memory communication performance

Many-core NUMA System

. Processor 1 Processor 2

i Numa 1 Numa 2 Numa 2

‘ Core 1 Core 5 Core 9
faSt ‘ Core 2 Core 6 Core 10

i Core 3 Core 7 Core 11

. Core 4 Core 8 Core 12

,,,

Numa 3
Core 13

Core 14
Core 15
Core 16

2/10

Challenge: exploiting the deep hierarchy of large NUMA machines

Core distance affects shared-memory communication performance

Many-core NUMA System

3 Processor 1 Processor 2 ‘1

. Numal Numa 2 Numa 2 Numa 3 i

Core 1 Core 5 Core 9 Core 13 3

fast € ‘
Core 2 Core 6 Core 10 Core 14 ;

l Core 3 Core 7 Core 11 Core 15 i

3 Core 4 Core 8 Core 12 Core 16 i

slow

2/10

Challenge: exploiting the deep hierarchy of large NUMA machines

Discovering the hierarchy with a pair of threads incrementing a shared counter

x86 server, 2 packages, L3 caches & hyperthreading

95]
ﬁu
]
]
h'.-
ql:-
]
]
o~]
- L |
15 L]
£48 hﬁ
5] o
3]
z]
.:'h
24 "ah
]
]
.:'h
.:.l:.
|
ju”
03 24 48 95

hyperthread 1

2/10

Challenge: exploiting the deep hierarchy of large NUMA machines

Discovering the hierarchy with a pair of threads incrementing a shared counter

x86 server, 2 packages, L3 caches & hyperthreading

95]
qn
o
o
I;.-
o
o
o
o
N o
- L |
3 L
£48 ,:.'C-
5] o
S o
<= [2
I:F'
24 b
o
]
l:.':'
':..;,
ju
03 24 48 95

hyperthread 1

» The full hierarchy

> hyperth reading — secondary diagonals

2/10

Challenge: exploiting the deep hierarchy of large NUMA machines

Discovering the hierarchy with a pair of threads incrementing a shared counter

x86 server, 2 packages, L3 caches & hyperthreading

95
» The full hierarchy
> hyperth reading — secondary diagonals
o » L3 cache partitions - 3x3 squares
3
_E 48
5]
£
24
3
0
03 24 48

hyperthread 1

2/10

Challenge: exploiting the deep hierarchy of large NUMA machines

Discovering the hierarchy with a pair of threads incrementing a shared counter

x86 server, 2 packages, L3 caches & hyperthreading

95
» The full hierarchy
> hyperthreading — secondary diagonals

o » L3 cache partitions - 3x3 squares
248 » NUMA nodes / packages - 24x24 squares
5]
=

24

3

0

03 24 48 95

hyperthread 1

2/10

Challenge: exploiting the deep hierarchy of large NUMA machines

HMCS performs better when it sees the deep hierarchy

x86 server, 2 packages, L3 caches & hyperthreading

95
» The full hierarchy
> hyperth reading — secondary diagonals
_‘: » L3 cache partitiOnS — 3x3 squares
2. » NUMA nodes / packages - 24x24 squares
- » HMCS lock can exploit the hierarchy
24 > HMCS(2), HMCS(3): partial hierarchy
> HMCS(4): full hierarchy
3
0
03 24 48 95

hyperthread 1

2/10

Challenge: exploiting the deep hierarchy of large NUMA machines

HMCS performs better when it sees the deep hierarchy

x86 server, 2 packages, L3 caches & hyperthreading
95

hyperthread 2
&

24

03 24 48 95
hyperthread 1

Median throughput (iter./ps)
T 28 &8 B & E

LevelDB readrandom benchmark, x86 server

//x

/x

X -X- X/x

1 .
/+>*<
l-\:::fgfz\,\j
148 16 24 32 48 64 95

Number of threads

HMCS(4) ’
—u— multi-levels, nm&lsAg?Nare

full hierarchy
HMCS (3) o MG,

o\ NUMA-oblivious
multi-levels

2/10

Challenge: exploiting the deep hierarchy of large NUMA machines

HMCS performs better when it sees the deep hierarchy

x86 server, 2 packages, L3 caches & hyperthreading

95 LevelDB readrandom benchmark, x86 server
1.4
1;1.2
él 0 /,/‘
o E—l]k% A —
B %o ‘7\.\ _——+ "
2w RN e =— —— —
§ % 0.4
- =2 | F
24 0.0
Multi-Level:
3 Encoding the actual deep hierarchy in
03 u 48 95 a multi-level lock maximizes locality,

hyperthread 1 i
thus improves performance.
2/10

Challenge: exploiting the deep hierarchy of large NUMA machines

Different platforms may have different deep hierarchies

95

48

hyperthread 2

24

x86 server, 2 packages, L3 caches & hyperthreading

03

24

Arm server, 2 packages, 4 NUMA nodes, cache tagging

127
Eﬁ
=
N
B
E&
L
]
N
]
]
B
o
~ o
o 64 L
S o
o B
]
]
B
E&
32 ,jﬁ
B
E&
B
E&
b
04 32 64 127
48 95 core 1
hyperthread 1

2/10

Challenge: locks perform differently according to scheduling & architecture

Comparing locks across different cohorts

x86 server — execution of classic locks on isolated cohorts

B ticket MM mcs HEE clh

Crossing package

Inside package

200 400
throughput (iter/ms)

(=)

Different levels may have better
performance with different locks.

3/10

Challenge: locks perform differently according to scheduling & architecture

Comparing locks across different cohorts

x86 server — execution of classic locks on isolated cohorts

B ticket MM mcs HEE clh

Crossing package

Inside package

(=)

200 400
throughput (iter/ms)

Different levels may have better
performance with different locks.

3/10

Challenge: locks perform differently according to scheduling & architecture

Comparing locks across different cohorts

x86 server — execution of classic locks on isolated cohorts

B ticket MM mcs HEE clh

Crossing package ﬁ

Inside package

0 200 400
throughput (iter/ms)

Different levels may have better
performance with different locks.

3/10

Challenge: locks perform differently according to scheduling & architecture

Comparing locks across different architectures

x86 server — execution of classic locks on isolated cohorts

B ticket MM mcs HEE clh

Crossing package

Inside package

200 400
throughput (iter/ms)

(=)

Different levels may have better
performance with different locks.

Arm server — execution of classic locks on isolated cohorts

B ticket MM mcs HEE clh

.]
Crossing package I
|
00 |
Inside package FEE—
|
0 250 500 750

throughput (iter/ms)

Different architectures/platforms may have
better performance with different locks.

3/10

Challenge: locks perform differently according to scheduling & architecture

Comparing locks across different architectures

x86 server — execution of classic locks on isolated cohorts

B ticket MM mcs HEE clh

Crossing package

Inside package

200 400
throughput (iter/ms)

(=)

Different levels may have better
performance with different locks.

Arm server — execution of classic locks on isolated cohorts

B ticket MM mcs HEE clh

Crossing package I

Inside package

‘ |

0 250 500 750
throughput (iter/ms)

Different architectures/platforms may have
better performance with different locks.

3/10

Challenge: locks perform differently according to scheduling & architecture

Comparing locks across different architectures

x86 server — execution of classic locks on isolated cohorts

B ticket MM mcs HEE clh

Crossing package

Inside package

200 400
throughput (iter/ms)

(=)

Different levels may have better
performance with different locks.

Arm server — execution of classic locks on isolated cohorts

B ticket MM mcs HEE clh

Crossing package I

Inside package

0 250 500 750
throughput (iter/ms)

Different architectures/platforms may have
better performance with different locks.

3/10

Challenge: locks perform differently according to scheduling & architecture

Potential performance benefits of heterogeneity

LevelDB readrandom benchmark, x86 server
/.
./ X
_— / x/
I ./x/
X

,_A
=

—
o

,_A

o

/

g
~. —
S~ |

Heterogeneity:
Locks perform differently according
to levels, architectures & platforms.

Median throughput (iter./ps)

o

148 16 24 32 18 64 95
Number of threads

Our approach with multi-levels,
full hierarchy & heterogeneity

—#— HMCS(4), multi-levels, full hierarchy
—+— HMCS(2), NUMA-aware

3/10

Challenge: verifying complex locks
We cannot model check the full hierarchy on WMMs

> Showing lock correctness is challenging — especially on different memory models

4/10

Challenge: verifying complex locks
We cannot model check the full hierarchy on WMMs

> Showing lock correctness is challenging — especially on different memory models
> Weak Memory Models (WMMs) allow reorderings for optimization

» Order of operations in concurrent code cannot be compromised
» Barriers must be used carefully to guarantee correct & efficient code

4/10

Challenge: verifying complex locks
We cannot model check the full hierarchy on WMMs

> Showing lock correctness is challenging — especially on different memory models
> Weak Memory Models (WMMs) allow reorderings for optimization

» Order of operations in concurrent code cannot be compromised
» Barriers must be used carefully to guarantee correct & efficient code

> Model checkers — e.g., GenMC — can verify correctness of simple locks. ..
But too slow for a large multi-level lock

4/10

Challenge: verifying complex locks
We cannot model check the full hierarchy on WMMs

> Showing lock correctness is challenging — especially on different memory models
> Weak Memory Models (WMMs) allow reorderings for optimization

» Order of operations in concurrent code cannot be compromised
» Barriers must be used carefully to guarantee correct & efficient code

> Model checkers — e.g., GenMC — can verify correctness of simple locks. ..
But too slow for a large multi-level lock

Correctness on WMMs:
Lock correctness is critical but verifying it is very expensive.

4/10

Our contributions: CLoF
A Compositional Lock Framework for Multi-level NUMA Systems

We propose CLoF, a framework to generate locks:

5/10

Our contributions: CLoF
A Compositional Lock Framework for Multi-level NUMA Systems

We propose CLoF, a framework to generate locks:

> that support an arbitrary hierarchy with multiple levels;

5/10

Our contributions: CLoF
A Compositional Lock Framework for Multi-level NUMA Systems

We propose CLoF, a framework to generate locks:
> that support an arbitrary hierarchy with multiple levels;

> in each level, the lock implementation may be different, levels are heterogeneous;

5/10

Our contributions: CLoF
A Compositional Lock Framework for Multi-level NUMA Systems

We propose CLoF, a framework to generate locks:
> that support an arbitrary hierarchy with multiple levels;

> in each level, the lock implementation may be different, levels are heterogeneous;

» the locks are correct-by-construction on Weak Memory Models.

5/10

Our contributions: CLoF

A Compositional Lock Framework for Multi-level NUMA Systems

We propose CLoF, a framework to generate locks:

> that support an arbitrary hierarchy with multiple levels;

> in each level, the lock implementation may be different, levels are heterogeneous;

» the locks are correct-by-construction on Weak Memory Models.

NUMA-aware locks Correctness Heterogeneity ~ Multi-Level
on WMMs

lock cohorting PPoPP'12 X X

HMCS PPoPP’15 xt X

CNA lock EuroSys'19 X X X

ShflLock SOSP'19 X X X

CLoF SOSP’'21

1|nsufficient barriers, fixed in Oberhauser et al., Verifying and Optimizing the HMCS Lock for Arm Servers, NETYS'2021. 5/10

The CLoF workflow

A user's perspective

Discover
memory hierarchy
o
;

6/10

The CLoF workflow

A user's perspective

Discover
memory hierarchy

Verify correctness
on WMMs
with VSync

6/10

The CLoF workflow

A user's perspective

Discover)
memory hierarchy

CLoF
Lock Generator

Verify correctness
on WMMs
with VSync

6/10

The CLoF workflow

A user's perspective

Discover)
memory hierarchy hundreds of CLoF locks
-
m‘n?n“
CLoF e
L+ ol
- / Lock Generator ® ®
CEEEEE
Verify correctness)
on WMMs
with VSync ""‘

6/10

The CLoF workflow

A user's perspective

Discover)
memory hierarchy

Verify correctness
on WMMs
with VSync

CLoF
Lock Generator

hundreds of CLoF locks

Run scripted
benchmark

@
©eeeee

©
<1!;!I|l!;'D'

6/10

The CLoF workflow

A user's perspective

Discover)
memory hierarchy

Verify correctness
on WMMs
with VSync

CLoF
Lock Generator

hundreds of CLoF locks

@
©eeeee

©
<1!;!I|l!;'D'

Run scripted
benchmark

Best CLoF lock

6/10

Composing CLoF locks

Two NUMA-node example

threads in / - threads in
NUMA node 1 _# '0 K NUMA node 2

7/10

Composing CLoF locks

Two NUMA-node example

system
level
NUMA-node
level
threads from threads from
NUMA node 1 NUMA node 2

7/10

Composing CLoF locks

Two NUMA-node example
\/Q tem
N o

NUMA-nod
Ievelrlo ‘

threads from threads from
NUMA node 1 NUMA node 2

7/10

Composing CLoF locks

Two NUMA-node example
\/Q tem
Q\\'\'\ S3|,esve|

NUMA-nod
Ievelrlo ‘

threads from threads from
NUMA node 1 NUMA node 2

Simplified algorithm

rCLoF(I, L)::acquire =
acquire /;
if (—already has L)
acquire L;

(.

(CLoF(I, L)::release =
if (others won't starve)
release /;
else
release L;

release /;

7/10

Composing CLoF locks

Two NUMA-node example

system
level
N

NUMA-node
level

cache-group
level

threads

Simplified algorithm

rCLoF(I, L)::acquire =
acquire /;
if (—already has L)
acquire L;

(.

(CLoF(I, L)::release =
if (others won't starve)
release /;
else
release L;
release /;

7/10

CLoF correctness
Can we model check the CLoF locks?

Model Checker
for WMM

8/10

CLoF correctness
Can we model check the CLoF locks?

Model Checker
for WMM

l
Kl

not practical!

8/10

CLoF correctness

Combining induction argument with model checking

Base Step Induction Step

8/10

CLoF correctness

Combining induction argument with model checking

tkt

Base Step

o @
\ /

Model Checker
for WMM

Induction Step

8/10

CLoF correctness

Combining induction argument with model checking
Base Step Induction Step

Q abstra.ct locks
\) Q <
tkt mcs S \\ *

@ §

S
\ / . X /L \
v

Model Checkerle” | = (pk-7
X

for WMM

8/10

CLoF correctness

Combining induction argument with model checking

Base Step

X
\ /

Model Checker
for WMM

Induction Step

Q abstra.l.ct locks

‘ Model Checker]
for WMM
X

8/10

CLoF correctness

Combining induction argument with model checking

tkt

Base Step

®

\ /

mcs

Model Checker
for WMM

Inductive correctness for
CLoF locks of any depth
and basic lock

Induction Step

Q abstrzict locks

%
(o
S

Model Checker]
for WMM
X

8/10

Select the best CLoF(4) lock

Generating/evaluating 256 CLoF locks and selecting the best

x86 server — LevelDB readrandom benchmark

)

—
@
=)

H
o
&

o
o
S

Median throughput (iter./ps
o IS
& a3t

148 16 24 32 48 64 95
Number of threads
—&— CLoF best (tkt-tkt-mcs-mcs)
—=— HMCS(4)
—4— CLoF worst (mcs-clh-tkt-mcs)
Others (254 locks)

Arm server — LevelDB readrandom benchmark

Median throughput (iter./ps)
8 2 3 2 &k &
(o3} (=} ot S ot (=]

o
o
S

e ——
¢ —
.‘I—.\.

/ —

fe—

*

148 162432 48 64 95 127
Number of threads
—&— CLoF best (tkt-clh-tkt-tkt)
—-— HMCS(4)
—— CLoF worst (mcs-tkt-tkt-tkt)
Others (254 locks)

9/10

Select the best CLoF(4) lock

Generating/evaluating 256 CLoF locks and selecting the best

x86 server — LevelDB readrandom benchmark

)

—
@
=)

H
o
&

1.00

0.75

o
o
S

Median throughput (iter./ps
o
R

+6%.

,/I+32%

P {W‘/./A
s =i
p— i
*
148 16 24 32 48 64 95

Number of threads

—&— CLoF best (tkt-tkt-mcs-mcs)

—=— HMCS(4)

—4— CLoF worst (mcs-clh-tkt-mcs)
Others (254 locks)

Arm server — LevelDB readrandom benchmark

—1.50 hey —
= /.\§+1W) —
< 1o —— - +17%
o 1.25 e
5 1.00 \/‘
2 G T —
20.75
e
=
= 0.50
(=
8
B 095
§ 0.25 .

0.00

148 162432 48 64 95 127

Number of threads
—&— CLoF best (tkt-clh-tkt-tkt)
—-— HMCS(4)
—— CLoF worst (mcs-tkt-tkt-tkt)
Others (254 locks)

9/10

Conclusion and future work

» CLoF locks

> fully leverage deep hierarchies and heterogeneity for good performance gains
> are correct-by-construction on Weak Memory Models

10/10

Conclusion and future work

» CLoF locks

> fully leverage deep hierarchies and heterogeneity for good performance gains
> are correct-by-construction on Weak Memory Models

Median throughput (iter./ps)

1.50

1.00

0.75

0.50

0.25

0.00

LevelDB readrandom benchmark, Arm server

\'—o—-o\.)
/x\i "\x—x\
x
i
l. .,
L S—
3 ;Q;\ \
—r + + +
— .
148 16 24 32 48 64 95 127

Number of threads
—e— CLoF(l)-Arm —+— CNA
—u— HMCS(4) —+— ShflLock
—=— MCS

10/10

Conclusion and future work

» CLoF locks
> fully leverage deep hierarchies and heterogeneity for good performance gains
> are correct-by-construction on Weak Memory Models
LevelDB readrandom benchmark, Arm server

> Don’t miss the details!

> tuning points H“’“ / ————e—
> platform-specific optimizations S125 - —
> analysis of lock combinations S /'%\
. 3 i S—
80 ()~ L
v S ———
E 0.50 »
:
=025

148 16 24 32 48 64 95 127
Number of threads

—e— CLoF(1)-Arm —+— CNA
—#— HMCS(1) +— ShflLock
—— MCS

10/10

Conclusion and future work

» CLoF locks

> fully leverage deep hierarchies and heterogeneity for good performance gains
> are correct-by-construction on Weak Memory Models

> Donlt miSS the details! LevelDB readrandom benchmark, Arm server

P~ o

L —

> tuning points

> platform-specific optimizations
> analysis of lock combinations
>

» Future work

> CLoF in the Linux kernel
> bIngTTLE pIatforms 0.00

Median throughput (iter./ps)
o

148 16 24 32 48 64 95 127
Number of threads
—e— CLoF(l)-Arm —+— CNA
HMCS (1) +— ShflLock
—=— MCS

10/10

Thank you

antonio.paolillo@huawei.com

