
CLoF:
A Compositional Lock Framework for Multi-level NUMA Systems

Rafael Chehab Antonio Paolillo Diogo Behrens Ming Fu Hermann Härtig Haibo Chen

October 29, 2021

Concurrency is everywhere
Modern operating systems,

databases & applications resort to
multi-core concurrency to
achieve high performance.

Linux spinlock evolution

TTAS
3 atomics
no fairness

Ticketlock
4 atomics
fairness

qspinlock
26 atomics
fairness, locality

CNA lock
46 atomics
NUMA-awareness

1990s

2008

2015

2021?

mo
re
#
co
res
, #

pa
ck
ag
es
, #

NU
M
As
, e
tc

Processor 1

Processor 2

Multi-processor System

Processor 1
Numa 1
Core 1
Core 2
Core 3
Core 4

Numa 2
Core 5
Core 6
Core 7
Core 8

Processor 2
. . .

Many-core NUMA System

1/10

Concurrency is everywhere
Modern operating systems,

databases & applications resort to
multi-core concurrency to
achieve high performance.

Linux spinlock evolution

TTAS
3 atomics
no fairness

Ticketlock
4 atomics
fairness

qspinlock
26 atomics
fairness, locality

CNA lock
46 atomics
NUMA-awareness

1990s

2008

2015

2021?

mo
re
#
co
res
, #

pa
ck
ag
es
, #

NU
M
As
, e
tc

Processor 1

Processor 2

Multi-processor System

Processor 1
Numa 1
Core 1
Core 2
Core 3
Core 4

Numa 2
Core 5
Core 6
Core 7
Core 8

Processor 2
. . .

Many-core NUMA System

1/10

Challenge: exploiting the deep hierarchy of large NUMA machines
Core distance affects shared-memory communication performance

Processor 1
Numa 1

Core 1
Core 2
Core 3
Core 4

Numa 2
Core 5
Core 6
Core 7
Core 8

Processor 2
Numa 2

Core 9
Core 10
Core 11
Core 12

Numa 3
Core 13
Core 14
Core 15
Core 16

Many-core NUMA System

2/10

Challenge: exploiting the deep hierarchy of large NUMA machines
Core distance affects shared-memory communication performance

Processor 1
Numa 1

Core 1
Core 2
Core 3
Core 4

Numa 2
Core 5
Core 6
Core 7
Core 8

Processor 2
Numa 2

Core 9
Core 10
Core 11
Core 12

Numa 3
Core 13
Core 14
Core 15
Core 16

Many-core NUMA System

fast

2/10

Challenge: exploiting the deep hierarchy of large NUMA machines
Core distance affects shared-memory communication performance

Processor 1
Numa 1

Core 1
Core 2
Core 3
Core 4

Numa 2
Core 5
Core 6
Core 7
Core 8

Processor 2
Numa 2

Core 9
Core 10
Core 11
Core 12

Numa 3
Core 13
Core 14
Core 15
Core 16

Many-core NUMA System

fast

slow
2/10

Challenge: exploiting the deep hierarchy of large NUMA machines
Discovering the hierarchy with a pair of threads incrementing a shared counter

x86 server, 2 packages, L3 caches & hyperthreading

0 3 24 48 95
hyperthread 1

95

48

24

3
0

hy
p

er
th

re
ad

2

2/10

Challenge: exploiting the deep hierarchy of large NUMA machines
Discovering the hierarchy with a pair of threads incrementing a shared counter

x86 server, 2 packages, L3 caches & hyperthreading

0 3 24 48 95
hyperthread 1

95

48

24

3
0

hy
p

er
th

re
ad

2

Ï The full hierarchy
Ï hyperthreading – secondary diagonals

Ï L3 cache partitions – 3×3 squares

Ï NUMA nodes / packages – 24×24 squares

Ï HMCS lock can exploit the hierarchy
Ï HMCS〈2〉, HMCS〈3〉: partial hierarchy
Ï HMCS〈4〉: full hierarchy

2/10

Challenge: exploiting the deep hierarchy of large NUMA machines
Discovering the hierarchy with a pair of threads incrementing a shared counter

x86 server, 2 packages, L3 caches & hyperthreading

0 3 24 48 95
hyperthread 1

95

48

24

3
0

hy
p

er
th

re
ad

2

Ï The full hierarchy
Ï hyperthreading – secondary diagonals

Ï L3 cache partitions – 3×3 squares

Ï NUMA nodes / packages – 24×24 squares

Ï HMCS lock can exploit the hierarchy
Ï HMCS〈2〉, HMCS〈3〉: partial hierarchy
Ï HMCS〈4〉: full hierarchy

2/10

Challenge: exploiting the deep hierarchy of large NUMA machines
Discovering the hierarchy with a pair of threads incrementing a shared counter

x86 server, 2 packages, L3 caches & hyperthreading

0 3 24 48 95
hyperthread 1

95

48

24

3
0

hy
p

er
th

re
ad

2

Ï The full hierarchy
Ï hyperthreading – secondary diagonals

Ï L3 cache partitions – 3×3 squares

Ï NUMA nodes / packages – 24×24 squares

Ï HMCS lock can exploit the hierarchy
Ï HMCS〈2〉, HMCS〈3〉: partial hierarchy
Ï HMCS〈4〉: full hierarchy

2/10

Challenge: exploiting the deep hierarchy of large NUMA machines
HMCS performs better when it sees the deep hierarchy

x86 server, 2 packages, L3 caches & hyperthreading

0 3 24 48 95
hyperthread 1

95

48

24

3
0

hy
p

er
th

re
ad

2

Ï The full hierarchy
Ï hyperthreading – secondary diagonals

Ï L3 cache partitions – 3×3 squares

Ï NUMA nodes / packages – 24×24 squares

Ï HMCS lock can exploit the hierarchy
Ï HMCS〈2〉, HMCS〈3〉: partial hierarchy
Ï HMCS〈4〉: full hierarchy

2/10

Challenge: exploiting the deep hierarchy of large NUMA machines
HMCS performs better when it sees the deep hierarchy

x86 server, 2 packages, L3 caches & hyperthreading

0 3 24 48 95
hyperthread 1

95

48

24

3
0

hy
p

er
th

re
ad

2

LevelDB readrandom benchmark, x86 server

1 4 8 16 24 32 48 64 95
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ed

ia
n

th
ro

ug
hp

ut
(i

te
r.

/µ
s)

HMCS〈4〉
multi-levels,
full hierarchy

HMCS〈3〉
multi-levels

HMCS〈2〉
NUMA-aware

MCS,
NUMA-oblivious

2/10

Challenge: exploiting the deep hierarchy of large NUMA machines
HMCS performs better when it sees the deep hierarchy

x86 server, 2 packages, L3 caches & hyperthreading

0 3 24 48 95
hyperthread 1

95

48

24

3
0

hy
p

er
th

re
ad

2

LevelDB readrandom benchmark, x86 server

1 4 8 16 24 32 48 64 95
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ed

ia
n

th
ro

ug
hp

ut
(i

te
r.

/µ
s)

HMCS〈4〉
multi-levels,
full hierarchy

HMCS〈3〉
multi-levels

HMCS〈2〉
NUMA-aware

MCS,
NUMA-oblivious

Multi-Level :
Encoding the actual deep hierarchy in
a multi-level lock maximizes locality,

thus improves performance.
2/10

Challenge: exploiting the deep hierarchy of large NUMA machines
Different platforms may have different deep hierarchies

x86 server, 2 packages, L3 caches & hyperthreading

0 3 24 48 95
hyperthread 1

95

48

24

3
0

hy
p

er
th

re
ad

2

Arm server, 2 packages, 4 NUMA nodes, cache tagging

0 4 32 64 127
core 1

127

64

32

4
0

co
re

2
2/10

Challenge: locks perform differently according to scheduling & architecture
Comparing locks across different cohorts

x86 server — execution of classic locks on isolated cohorts

0 200 400
throughput (iter/ms)

Crossing package

Inside package

ticket mcs clh

Different levels may have better
performance with different locks.

Arm server — execution of classic locks on isolated cohorts

0 250 500 750
throughput (iter/ms)

Crossing package

Inside package

ticket mcs clh

Different architectures/platforms may have
better performance with different locks.

3/10

Challenge: locks perform differently according to scheduling & architecture
Comparing locks across different cohorts

x86 server — execution of classic locks on isolated cohorts

0 200 400
throughput (iter/ms)

Crossing package

Inside package

ticket mcs clh

Different levels may have better
performance with different locks.

Arm server — execution of classic locks on isolated cohorts

0 250 500 750
throughput (iter/ms)

Crossing package

Inside package

ticket mcs clh

Different architectures/platforms may have
better performance with different locks.

3/10

Challenge: locks perform differently according to scheduling & architecture
Comparing locks across different cohorts

x86 server — execution of classic locks on isolated cohorts

0 200 400
throughput (iter/ms)

Crossing package

Inside package

ticket mcs clh

Different levels may have better
performance with different locks.

Arm server — execution of classic locks on isolated cohorts

0 250 500 750
throughput (iter/ms)

Crossing package

Inside package

ticket mcs clh

Different architectures/platforms may have
better performance with different locks.

3/10

Challenge: locks perform differently according to scheduling & architecture
Comparing locks across different architectures

x86 server — execution of classic locks on isolated cohorts

0 200 400
throughput (iter/ms)

Crossing package

Inside package

ticket mcs clh

Different levels may have better
performance with different locks.

Arm server — execution of classic locks on isolated cohorts

0 250 500 750
throughput (iter/ms)

Crossing package

Inside package

ticket mcs clh

Different architectures/platforms may have
better performance with different locks.

3/10

Challenge: locks perform differently according to scheduling & architecture
Comparing locks across different architectures

x86 server — execution of classic locks on isolated cohorts

0 200 400
throughput (iter/ms)

Crossing package

Inside package

ticket mcs clh

Different levels may have better
performance with different locks.

Arm server — execution of classic locks on isolated cohorts

0 250 500 750
throughput (iter/ms)

Crossing package

Inside package

ticket mcs clh

Different architectures/platforms may have
better performance with different locks.

3/10

Challenge: locks perform differently according to scheduling & architecture
Comparing locks across different architectures

x86 server — execution of classic locks on isolated cohorts

0 200 400
throughput (iter/ms)

Crossing package

Inside package

ticket mcs clh

Different levels may have better
performance with different locks.

Arm server — execution of classic locks on isolated cohorts

0 250 500 750
throughput (iter/ms)

Crossing package

Inside package

ticket mcs clh

Different architectures/platforms may have
better performance with different locks.

3/10

Challenge: locks perform differently according to scheduling & architecture
Potential performance benefits of heterogeneity

Heterogeneity :
Locks perform differently according
to levels, architectures & platforms.

LevelDB readrandom benchmark, x86 server

1 4 8 16 24 32 48 64 95
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ed

ia
n

th
ro

ug
hp

ut
(i

te
r.

/µ
s)

Our approach with multi-levels,
full hierarchy & heterogeneity

HMCS〈4〉, multi-levels, full hierarchy

HMCS〈2〉, NUMA-aware

3/10

Challenge: verifying complex locks
We cannot model check the full hierarchy on WMMs

Ï Showing lock correctness is challenging — especially on different memory models

Ï Weak Memory Models (WMMs) allow reorderings for optimization
Ï Order of operations in concurrent code cannot be compromised
Ï Barriers must be used carefully to guarantee correct & efficient code

Ï Model checkers – e.g., GenMC – can verify correctness of simple locks. . .
But too slow for a large multi-level lock

Correctness on WMMs:
Lock correctness is critical but verifying it is very expensive.

4/10

Challenge: verifying complex locks
We cannot model check the full hierarchy on WMMs

Ï Showing lock correctness is challenging — especially on different memory models

Ï Weak Memory Models (WMMs) allow reorderings for optimization
Ï Order of operations in concurrent code cannot be compromised
Ï Barriers must be used carefully to guarantee correct & efficient code

Ï Model checkers – e.g., GenMC – can verify correctness of simple locks. . .
But too slow for a large multi-level lock

Correctness on WMMs:
Lock correctness is critical but verifying it is very expensive.

4/10

Challenge: verifying complex locks
We cannot model check the full hierarchy on WMMs

Ï Showing lock correctness is challenging — especially on different memory models

Ï Weak Memory Models (WMMs) allow reorderings for optimization
Ï Order of operations in concurrent code cannot be compromised
Ï Barriers must be used carefully to guarantee correct & efficient code

Ï Model checkers – e.g., GenMC – can verify correctness of simple locks. . .
But too slow for a large multi-level lock

Correctness on WMMs:
Lock correctness is critical but verifying it is very expensive.

4/10

Challenge: verifying complex locks
We cannot model check the full hierarchy on WMMs

Ï Showing lock correctness is challenging — especially on different memory models

Ï Weak Memory Models (WMMs) allow reorderings for optimization
Ï Order of operations in concurrent code cannot be compromised
Ï Barriers must be used carefully to guarantee correct & efficient code

Ï Model checkers – e.g., GenMC – can verify correctness of simple locks. . .
But too slow for a large multi-level lock

Correctness on WMMs:
Lock correctness is critical but verifying it is very expensive.

4/10

Our contributions: CLoF
A Compositional Lock Framework for Multi-level NUMA Systems

We propose CLoF, a framework to generate locks:

Ï that support an arbitrary hierarchy with multiple levels;
Ï in each level, the lock implementation may be different, levels are heterogeneous;
Ï the locks are correct-by-construction on Weak Memory Models.

NUMA-aware locks Correctness Heterogeneity Multi-Level
on WMMs

lock cohorting PPoPP’12 7 3 7

HMCS PPoPP’15 71 7 3
CNA lock EuroSys’19 7 7 7
ShflLock SOSP’19 7 7 7
CLoF SOSP’21 3 3 3

1Insufficient barriers, fixed in Oberhauser et al., Verifying and Optimizing the HMCS Lock for Arm Servers, NETYS’2021.

5/10

Our contributions: CLoF
A Compositional Lock Framework for Multi-level NUMA Systems

We propose CLoF, a framework to generate locks:
Ï that support an arbitrary hierarchy with multiple levels;

Ï in each level, the lock implementation may be different, levels are heterogeneous;
Ï the locks are correct-by-construction on Weak Memory Models.

NUMA-aware locks Correctness Heterogeneity Multi-Level
on WMMs

lock cohorting PPoPP’12 7 3 7

HMCS PPoPP’15 71 7 3
CNA lock EuroSys’19 7 7 7
ShflLock SOSP’19 7 7 7
CLoF SOSP’21 3 3 3

1Insufficient barriers, fixed in Oberhauser et al., Verifying and Optimizing the HMCS Lock for Arm Servers, NETYS’2021.

5/10

Our contributions: CLoF
A Compositional Lock Framework for Multi-level NUMA Systems

We propose CLoF, a framework to generate locks:
Ï that support an arbitrary hierarchy with multiple levels;
Ï in each level, the lock implementation may be different, levels are heterogeneous;

Ï the locks are correct-by-construction on Weak Memory Models.

NUMA-aware locks Correctness Heterogeneity Multi-Level
on WMMs

lock cohorting PPoPP’12 7 3 7

HMCS PPoPP’15 71 7 3
CNA lock EuroSys’19 7 7 7
ShflLock SOSP’19 7 7 7
CLoF SOSP’21 3 3 3

1Insufficient barriers, fixed in Oberhauser et al., Verifying and Optimizing the HMCS Lock for Arm Servers, NETYS’2021.

5/10

Our contributions: CLoF
A Compositional Lock Framework for Multi-level NUMA Systems

We propose CLoF, a framework to generate locks:
Ï that support an arbitrary hierarchy with multiple levels;
Ï in each level, the lock implementation may be different, levels are heterogeneous;
Ï the locks are correct-by-construction on Weak Memory Models.

NUMA-aware locks Correctness Heterogeneity Multi-Level
on WMMs

lock cohorting PPoPP’12 7 3 7

HMCS PPoPP’15 71 7 3
CNA lock EuroSys’19 7 7 7
ShflLock SOSP’19 7 7 7
CLoF SOSP’21 3 3 3

1Insufficient barriers, fixed in Oberhauser et al., Verifying and Optimizing the HMCS Lock for Arm Servers, NETYS’2021.

5/10

Our contributions: CLoF
A Compositional Lock Framework for Multi-level NUMA Systems

We propose CLoF, a framework to generate locks:
Ï that support an arbitrary hierarchy with multiple levels;
Ï in each level, the lock implementation may be different, levels are heterogeneous;
Ï the locks are correct-by-construction on Weak Memory Models.

NUMA-aware locks Correctness Heterogeneity Multi-Level
on WMMs

lock cohorting PPoPP’12 7 3 7

HMCS PPoPP’15 71 7 3
CNA lock EuroSys’19 7 7 7
ShflLock SOSP’19 7 7 7
CLoF SOSP’21 3 3 3

1Insufficient barriers, fixed in Oberhauser et al., Verifying and Optimizing the HMCS Lock for Arm Servers, NETYS’2021. 5/10

The CLoF workflow
A user’s perspective

Discover
memory hierarchy

0 4 32 64 127
core 1

127

64

32

4
0

co
re

2

6/10

The CLoF workflow
A user’s perspective

Discover
memory hierarchy

0 4 32 64 127
core 1

127

64

32

4
0

co
re

2

Verify correctness
on WMMs
with VSync

clhtkt mcs

6/10

The CLoF workflow
A user’s perspective

Discover
memory hierarchy

0 4 32 64 127
core 1

127

64

32

4
0

co
re

2

Verify correctness
on WMMs
with VSync

clhtkt mcs

CLoF
Lock Generator

6/10

The CLoF workflow
A user’s perspective

Discover
memory hierarchy

0 4 32 64 127
core 1

127

64

32

4
0

co
re

2

Verify correctness
on WMMs
with VSync

clhtkt mcs

CLoF
Lock Generator

mcs

mcs

mcs mcs mcs

mcs

mcs mcs mcs

tkt

clh

tkt tkt tkt

clh

tkt tkt tkt

hundreds of CLoF locks

mcs

tkt

clh clh clh

tkt

clh clh clh

...

6/10

The CLoF workflow
A user’s perspective

Discover
memory hierarchy

0 4 32 64 127
core 1

127

64

32

4
0

co
re

2

Verify correctness
on WMMs
with VSync

clhtkt mcs

CLoF
Lock Generator

mcs

mcs

mcs mcs mcs

mcs

mcs mcs mcs

tkt

clh

tkt tkt tkt

clh

tkt tkt tkt

hundreds of CLoF locks

mcs

tkt

clh clh clh

tkt

clh clh clh

...

Run scripted
benchmark

6/10

The CLoF workflow
A user’s perspective

Discover
memory hierarchy

0 4 32 64 127
core 1

127

64

32

4
0

co
re

2

Verify correctness
on WMMs
with VSync

clhtkt mcs

CLoF
Lock Generator

mcs

mcs

mcs mcs mcs

mcs

mcs mcs mcs

tkt

clh

tkt tkt tkt

clh

tkt tkt tkt

hundreds of CLoF locks

mcs

tkt

clh clh clh

tkt

clh clh clh

...

Run scripted
benchmark

tkt

clh

tkt tkt tkt

clh

tkt tkt tkt

Best CLoF lock

6/10

Composing CLoF locks

Two NUMA-node example

l0threads in
NUMA node 1

threads in
NUMA node 2

(BasicLocks) l ::= l0, l1, l2, . . .
(ClofLocks) L ::= l | CLoF(l,L)

Simplified algorithm

7/10

Composing CLoF locks

Two NUMA-node example

l0

l1 l2
threads from
NUMA node 1

threads from
NUMA node 2

NUMA-node
level

system
level

(BasicLocks) l ::= l0, l1, l2, . . .
(ClofLocks) L ::= l | CLoF(l,L)

Simplified algorithm

7/10

Composing CLoF locks

Two NUMA-node example

l0

l1 l2

CL
oF
(l 1
, L
0)

threads from
NUMA node 1

threads from
NUMA node 2

L0
l0

NUMA-node
level

system
level

(BasicLocks) l ::= l0, l1, l2, . . .
(ClofLocks) L ::= l | CLoF(l,L)

Simplified algorithm

CLoF(l , L)::acquire =
acquire l ;
if (¬already has L)

acquire L;

CLoF(l , L)::release =
if (others won’t starve)

release l ;
else

release L;
release l ;

7/10

Composing CLoF locks

Two NUMA-node example

l0

l1 l2

CL
oF
(l 1
, L
0)

threads from
NUMA node 1

threads from
NUMA node 2

L0
l0

NUMA-node
level

system
level

(BasicLocks) l ::= l0, l1, l2, . . .
(ClofLocks) L ::= l | CLoF(l,L)

Simplified algorithm

CLoF(l , L)::acquire =
acquire l ;
if (¬already has L)

acquire L;

CLoF(l , L)::release =
if (others won’t starve)

release l ;
else

release L;
release l ;

7/10

Composing CLoF locks

Two NUMA-node example

l0

l1 l2

l3 l4 l5 l6

L1

L0
l0

l1

cache-group
level

NUMA-node
level

system
level

threads

CL
oF
(l 3
, L
1)

(BasicLocks) l ::= l0, l1, l2, . . .
(ClofLocks) L ::= l | CLoF(l,L)

Simplified algorithm

CLoF(l , L)::acquire =
acquire l ;
if (¬already has L)

acquire L;

CLoF(l , L)::release =
if (others won’t starve)

release l ;
else

release L;
release l ;

7/10

CLoF correctness
Can we model check the CLoF locks?

tkt

clh

tkt tkt tkt

clh

tkt tkt tkt

mcs

tkt

clh clh clh

tkt

clh clh clh

tkt

clh

mcs

tkt tkt

mcs

tkt tkt

clh

mcs

tkt tkt

mcs

tkt tkt

. . .

Model Checker
for WMM

8/10

CLoF correctness
Can we model check the CLoF locks?

tkt

clh

tkt tkt tkt

clh

tkt tkt tkt

mcs

tkt

clh clh clh

tkt

clh clh clh

tkt

clh

mcs

tkt tkt

mcs

tkt tkt

clh

mcs

tkt tkt

mcs

tkt tkt

. . .

Model Checker
for WMM

¨¨¨ . . .
not practical!

8/10

CLoF correctness
Combining induction argument with model checking

Base Step Induction Step

8/10

CLoF correctness
Combining induction argument with model checking

Base Step Induction Step

tkt clh mcs . . .

Model Checker
for WMM

¦3

8/10

CLoF correctness
Combining induction argument with model checking

Base Step Induction Step

tkt clh mcs . . .

Model Checker
for WMM

¦3

l0

l ′ l ′′

L′
=C

Lo
F(l

′ , L
)

L
l

abstract locks

8/10

CLoF correctness
Combining induction argument with model checking

Base Step Induction Step

tkt clh mcs . . .

Model Checker
for WMM

¦3

l0

l ′ l ′′

L′
=C

Lo
F(l

′ , L
)

L
l

abstract locks

Model Checker
for WMM

¦3

8/10

CLoF correctness
Combining induction argument with model checking

Base Step Induction Step

tkt clh mcs . . .

Model Checker
for WMM

¦3

Inductive correctness for
CLoF locks of any depth

and basic lock

l0

l ′ l ′′

L′
=C

Lo
F(l

′ , L
)

L
l

abstract locks

Model Checker
for WMM

¦3

8/10

Select the best CLoF〈4〉 lock
Generating/evaluating 256 CLoF locks and selecting the best

x86 server — LevelDB readrandom benchmark

14 8 16 24 32 48 64 95
Number of threads

0.00

0.25

0.50

0.75

1.00

1.25

1.50

M
ed

ia
n

th
ro

ug
hp

ut
(i

te
r.

/µ
s)

CLoF best (tkt-tkt-mcs-mcs)

HMCS〈4〉
CLoF worst (mcs-clh-tkt-mcs)

Others (254 locks)

+32%

+21%

+6%

Arm server — LevelDB readrandom benchmark

148 162432 48 64 95 127
Number of threads

0.00

0.25

0.50

0.75

1.00

1.25

1.50

M
ed

ia
n

th
ro

ug
hp

ut
(i

te
r.

/µ
s)

CLoF best (tkt-clh-tkt-tkt)

HMCS〈4〉
CLoF worst (mcs-tkt-tkt-tkt)

Others (254 locks)

+17%
+11%

+11%

9/10

Select the best CLoF〈4〉 lock
Generating/evaluating 256 CLoF locks and selecting the best

x86 server — LevelDB readrandom benchmark

14 8 16 24 32 48 64 95
Number of threads

0.00

0.25

0.50

0.75

1.00

1.25

1.50

M
ed

ia
n

th
ro

ug
hp

ut
(i

te
r.

/µ
s)

CLoF best (tkt-tkt-mcs-mcs)

HMCS〈4〉
CLoF worst (mcs-clh-tkt-mcs)

Others (254 locks)

+32%

+21%

+6%

Arm server — LevelDB readrandom benchmark

148 162432 48 64 95 127
Number of threads

0.00

0.25

0.50

0.75

1.00

1.25

1.50

M
ed

ia
n

th
ro

ug
hp

ut
(i

te
r.

/µ
s)

CLoF best (tkt-clh-tkt-tkt)

HMCS〈4〉
CLoF worst (mcs-tkt-tkt-tkt)

Others (254 locks)

+17%
+11%

+11%

9/10

Conclusion and future work

Ï CLoF locks
Ï fully leverage deep hierarchies and heterogeneity for good performance gains
Ï are correct-by-construction on Weak Memory Models

Ï Don’t miss the details!
Ï tuning points
Ï platform-specific optimizations
Ï analysis of lock combinations
Ï . . .

Ï Future work
Ï CLoF in the Linux kernel
Ï big.LITTLE platforms

10/10

Conclusion and future work

Ï CLoF locks
Ï fully leverage deep hierarchies and heterogeneity for good performance gains
Ï are correct-by-construction on Weak Memory Models

Ï Don’t miss the details!
Ï tuning points
Ï platform-specific optimizations
Ï analysis of lock combinations
Ï . . .

Ï Future work
Ï CLoF in the Linux kernel
Ï big.LITTLE platforms

14 8 16 24 32 48 64 95 127
Number of threads

0.00

0.25

0.50

0.75

1.00

1.25

1.50

M
ed

ia
n

th
ro

ug
hp

ut
(i

te
r.

/µ
s)

CLoF〈4〉-Arm

HMCS〈4〉
MCS

CNA

ShflLock

LevelDB readrandom benchmark, Arm server

10/10

Conclusion and future work

Ï CLoF locks
Ï fully leverage deep hierarchies and heterogeneity for good performance gains
Ï are correct-by-construction on Weak Memory Models

Ï Don’t miss the details!
Ï tuning points
Ï platform-specific optimizations
Ï analysis of lock combinations
Ï . . .

Ï Future work
Ï CLoF in the Linux kernel
Ï big.LITTLE platforms

14 8 16 24 32 48 64 95 127
Number of threads

0.00

0.25

0.50

0.75

1.00

1.25

1.50

M
ed

ia
n

th
ro

ug
hp

ut
(i

te
r.

/µ
s)

CLoF〈4〉-Arm

HMCS〈4〉
MCS

CNA

ShflLock

LevelDB readrandom benchmark, Arm server

10/10

Conclusion and future work

Ï CLoF locks
Ï fully leverage deep hierarchies and heterogeneity for good performance gains
Ï are correct-by-construction on Weak Memory Models

Ï Don’t miss the details!
Ï tuning points
Ï platform-specific optimizations
Ï analysis of lock combinations
Ï . . .

Ï Future work
Ï CLoF in the Linux kernel
Ï big.LITTLE platforms

14 8 16 24 32 48 64 95 127
Number of threads

0.00

0.25

0.50

0.75

1.00

1.25

1.50

M
ed

ia
n

th
ro

ug
hp

ut
(i

te
r.

/µ
s)

CLoF〈4〉-Arm

HMCS〈4〉
MCS

CNA

ShflLock

LevelDB readrandom benchmark, Arm server

10/10

Thank you
antonio.paolillo@huawei.com

