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Abstract 

3D pose estimation and gesture command recognition are crucial for ensuring safety and 

improving human-robot interaction. While RGB-D cameras are commonly used for these 

tasks, they often raise privacy concerns due to their ability to capture detailed visual data of 

human operators. In contrast, using RaDAR sensors offers a privacy-preserving alternative, as 

they can output point-cloud data rather than images. We introduce mmPrivPose3D, a 

dataset of 3D RaDAR point-cloud data that captures human movements and gestures using a 
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single IWR6843AOPEVM RaDAR sensor with a frequency of 10 Hz synchronized with 19 

corresponding 3D skeleton keypoints as the ground truth. These keypoints were extracted 

from RGB-D images captured by an Intel RealSense camera recorded at 30 frames per 

second using the Nuitrack SDK, and labeled with gestures. The dataset was collected from 

n=15 participants. Our dataset serves as a fundamental resource for developing machine 

learning algorithms to improve the accuracy of pose estimation and gesture recognition 

using RaDAR data. 

SPECIFICATIONS TABLE 
Subject Manufacturing Engineering 

Specific subject area 3D point-cloud data of human movements and gestures 

captured by a RaDAR sensor synchronized with RGB-D images 

installed on the base of a robot manipulator. 

Type of data 3D point-cloud, 3D skeleton keypoints 

Raw, Labelled 

Data collection We collected 3D point-clouds of humans from an 

IWR6843AOPEVM RaDAR with 10 Hz data frequency and 3D 

keypoints extracted by the Nuitrack SDK from RGB-D image 

from an Intel RealSense L515 camera at 30 frame rate per 

second as the ground truth in real-time, we synchronized the 

frames of both sensors together. An offset between the sensors 

(3.9 cm in both horizontal and vertical directions) and a 90-

degree rotation around the local x-axis were applied to the 

camera data for spatial calibration and alignment with the 

RaDAR’s coordinate system. 

Data source location Institution: Brubotics, Vrije Universiteit Brussels 

District/City: Elsene, Brussels 

Country: Belgium 

Data accessibility Repository name: Mendeley Data 

Data identification number: https://doi.org/10.17632/ 
pmdr5rgn8c.1 

Direct URL to data: https://data.mendeley.com/datasets/ 

pmdr5rgn8c/1 

Related research 

article 

Not yet available (Under Submission) 

VALUE OF THE DATA 

• The RaDAR sensor approach offers a privacy-preserving method for pose estimation 

and gesture recognition compared to visual data (e.g. images and video), which is 
particularly relevant for compliance with GDPR and other data protection regulations. 

• This dataset provides 24005 samples of 3D point-cloud data synchronized with 3D 

skeleton keypoints extracted from RGB-D images, which are essential for developing 
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and training machine learning models that improve pose estimation and gesture 

recognition using RaDAR sensors. 

• This dataset uses a single frontally facing IWR6843AOPEVM RaDAR sensor compared 

to multiple RaDAR sensors used in the other datasets. 

• Researchers can use this dataset to benchmark new algorithms for pose estimation 

and gesture recognition, and validate the performance of their models for safety in 

humanrobot collaborative manufacturing or industrial automation. For example, the 

predicted human operator’s body keypoints can be used in a speed and separation 

monitoring mode according to ISO 15066 so that the robot slows down or stops 

depending on the operator’s proximity. 

BACKGROUND 

Collaborative robots face challenges in ensuring safety at high speeds, and their rapid 

operation can compromise human safety [1, 2, 3]. In this context, accurate 3D pose 

estimation of human operators and their gesture commands is necessary to ensure safety 

and facilitate human-robot interaction. Sensor-based solutions have been implemented to 

improve safety while maintaining efficiency. For example, light-based sensors such as RGB-D 

cameras are widely used but often struggle with environmental conditions and raise privacy 

concerns [4, 5]. To address these limitations, RaDAR sensors offer a promising alternative, 

providing reliable detection even in harsh environments [6]. For example, the MARS dataset 

contains approximately 40000 frames of upper/lower limb extension, front/side lunge, and 

squat as activities [7]. However, this dataset is collected from only four individuals, leading to 

a lack of diversity among participants. Additionally, it used a 77GHz IWR1443BOAST which is 

not authorized for industry purposes. Another dataset is mmpose-NLP which contains 16200 

RaDAR point-cloud samples of walking back and forth, and arm swing as activities[8]. This 

dataset has the same disadvantages as the previous dataset by using two RaDAR sensors 

without industrial authorized frequency and with only two participants. Finally, the HuPR 

dataset contains 141000 samples performing hand waving, standing, and walking [9]. This 

dataset was collected from six participants and has stored range-doppler heatmaps as the 

data. It used two 77GHz IWR1843BOAST RaDAR sensors which is not authorized for industry 

purposes. Using heatmap instead of point-clouds enables more advanced applications while 

increasing the data size and making the dataset more dependent on the hardware type 

being exactly the dataset sensor. 

DATA DESCRIPTION 

The data was collected in a public environment at the Brubotics Lab, Vrije Universiteit 

Brussel. The mmPrivPose3D dataset is organized into two folders: pose_estimation and 

gesture_recogtion, see Figure 1. Each folder includes CSV files of 3D point-cloud and 3D 

skeleton keypoints labeled with gesture commands. The names of 19 skeleton keypoints are 

illustrated in Figure 2. The format of each CSV file is detailed in Table 1. This dataset contains 

24005 samples for the pose estimation model from participants walking and 86483 samples 

of participants hand-waving. Free walking and left/right hand waving were chosen based on 
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their popularity in human-robot collaboration applications and relevant datasets ([10], [11], 

[9], [12], [13] ). The purpose of gathering more samples from hand-wavings is that these 

movements are from smaller body parts (hands and wrists), which reflect less power than 

larger ones, as mentioned in various papers, including RFPose3D [14]. This results in one 

RaDAR point-cloud set from a waving human that does not have enough points to enable 

the classifier to distinguish between two motions. As a result, to gather more discriminative 

features between the point cloud data from the two motions and classify them correctly, the 

number of samples was increased. In total, the size of this dataset is 195.8 MB. 

 

Figure 1: The dataset structure of the mmPrivPose3D_dataset in Mendeley data. 

 

Figure 2: Arrangement of the 19 3D skeleton keypoints extracted from RDG-D images. 

EXPERIMENTAL DESIGN, MATERIALS AND METHODS 

We recruited a diverse group of 15 participants, including 14 males and 1 female, aged 

between 24 and 37 years, with heights ranging from 1.7 to 1.8 meters and varying body 

sizes. It should be noted that the sensors used in this work are independent of demographic 

variables such as gender and age and they only capture the mechanical aspects of 

movement. The sensors are also not sensitive to height. While this range may not cover all 

possible heights globally, it is a reasonable height range in Europe. This reflects our practical 
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and logistical conditions rather than intentional exclusion. RaDAR is resilient to 

environmental variations and therefore supports the reliability of this dataset across 

environmental conditions [6]. The data collection received ethical approval from the Ethics 

Committee for Human Sciences at the Vrije Universiteit Brussel on 26th April 2024 

(ECHW_511). Informed consent was obtained from all participants for data collection and 

processing. 

 

Table 1: Format of the CSV file. 

Elapsed Time Timestamp Sorted Point-

cloud 

Keypoints 3D Label 

[Timestamp 

(ms)] 

[Date Time] (xi,yi,zi) for i 

1,...,n 

= (xi,yi,zi) for i = 

1,...,19 

None|Left-hand 

wave|Righthand 

wave 

62.0303154 2024-06-24 

11:28:09.589416 

[-1.87980679 

3.52237416 

0.37596134],... 

- 

[-0.0235302 

3.74955 - 

0.20174967],..., 

None 

60.85205078 38:06.0 [-2.07987979 

5.63128322 

0.75631991],... 

 [ 0.05464058 

3.1844783 

-0.1878637 ],... 

Left-hand wave 

59.96990204 48:40.8 [-1.78086966 

6.06348627 

0.3957488 ],... 

 [ 0.0709745 

3.7584932 

-0.2031855],... 

Right-hand 

wave 

 

Figure 3: The experimental setup. A RaDAR sensor is used to collect a 3D point-cloud while 

an RGB-D camera is used to capture images for 3D keypoints extraction. 

The experimental setup is illustrated in Figure 3A-B. We collected 3D point-clouds of a single 

operator in front of the robot from an IWR6843AOPEVM RaDAR installed on the robot base 

with a 10 Hz data frequency. At the same time in parallel, 3D skeleton keypoints are 

extracted from RGB-D images captured by an Intel RealSense L515 camera with a 30 frame 

rate per second (fps) using the Nuitrack SDK, which then are synchronized. During the 

A. Experimental setup B. Data collection 

RaDAR  Point cloud data 

Nuitrack SDK  3 D keypoints 
( as ground truth ) 

Intel RealSense L515 

IWR6843AOPEVM 

Robot 

Human 

None (walking right) 

None (walking left) 

Left-hand wave 

Right-hand wave 

C. Example poses and gestures 
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experiments, the operator moved in an area where their distance to both sensors can vary 

between two to four meters. The choice of a minimum distance of two meters was to ensure 

that human safety was maintained while human-robot interaction as it is above the reach of 

long collaborative robots such as UR10e (1.3 m). In addition, this minimum distance ensures 

capturing the full body of a human that can even have a height of 2.21 m within the field of 

view of both sensors (RaDAR and Intel RealSense L515 used as ground truth). The 

experiment was performed in a controlled environment free of objects other than humans in 

front of the RaDAR to ensure minimum reflections that might result in outliers. A statistical 

outlier removal algorithm was also placed to remove any possible outliers. The 3D keypoints 

serve as the ground truth in real time. An offset between the sensors (3.9 cm in both 

horizontal and vertical directions) and a 90-degree rotation around the local x-axis were 

applied to the camera data for spatial calibration and alignment with the RaDAR’s coordinate 

system. The RaDAR sensor was mounted 1.15 meters above the ground, chosen based on 

the 120 degrees field of view of the sensor in azimuth and elevation to ensure full human 

body coverage between two to four meters from the sensor. To account for potential 

misalignments or drift, the experimental setup was regularly inspected to verify that both 

alignment and mounting distance remained consistent. Periodic recalibration checks were 

performed using known reference points to maintain accurate sensor alignment and address 

any shifts or drift. Some examples of poses, left-hand wave and right-hand wave gestures 

can be seen in Figure 3C. 

This dataset can be used to develop machine learning algorithms for pose estimation and 

gesture recognition using RaDAR data. Researchers and developers can develop different 

models based on their targeted applications. As an example, we have used a 3D 

Convolutional Neural Network (CNN) architecture to extract 19 human skeleton keypoints, 

and a random forest classifier in parallel for gesture command recognition. Through a 

parallel architecture, we overcome the issue with the low reflectivity of hands and lower 

arms [14]. For pose estimation, we achieved the lowest overall MPJPE (Mean Per Joint 

Position Error) of 48.3 mm, outperforming RPM 2.0 [15] at 57.5 mm, RPM [13] at 59.2 mm, 

and RFPose3D [14] at 134.1 mm. For gesture recognition, our model achieved an inference 

accuracy of 96.2%, outperforming the CNN model (three layers of convolution, pooling, and 

fully connected layers) at 94.9%, the Set-Transformer (utilizing an encoder-decoder 

framework with multi-head self-attention) at 94.3%, and a three-layer LSTM model at 85.7% 
on the same dataset. 

LIMITATIONS 

To keep the dataset lightweight, we do not provide the raw RaDAR data but the point-cloud 
output from the RaDAR’s DSP based on-RaDAR chip range bin processing. 

We relied on the Nutritrack SDK which does not account for the orientation of the human 

relative to the radar sensor. As a result, when the human turns 180 degrees, the system 

incorrectly maps the left foot to the right foot (backward) and vice versa, as the skeleton 

model does not rotate with the subject. 
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The single RaDAR sensor in this dataset has a limited field of view (FOV). While additional 

RaDAR sensors could expand coverage, this dataset focuses on a single FOV for a compact 

hardware installation. 
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