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Abstract— Various sensors are employed in dynamic human-robot collaboration
manufacturing environments for real-time human pose estimation to improve safety
through collision-avoidance systems and gesture command recognition to enhance
human-robot interaction. However, the most widely used sensors – RGBD cameras
– often underperform under varying lighting and environmental conditions and raise
privacy concerns. This paper introduces mmPrivPose3D, a novel system designed
to prioritize privacy while performing human pose estimation and gesture com-
mand recognition using a 60 GHz industrial Frequency Modulated Continuous Wave
(FMCW) RaDAR with a 10 m maximum range and 29 degrees angular resolution. The
system employs a parallel architecture including a 3D Convolutional Neural Network
(CNN) for pose estimation, which extracts 19 keypoints of the human skeleton, along
with a random forest classifier for recognizing gesture commands. The system was
trained on a dataset involving ten individuals performing various movements in a human-robot interaction context,
including walking in the workspace and hand-waving gestures. Our model demonstrated a low Mean Per Joint Position
Error (MPJPE) of 4.8% across keypoints for pose estimation and, for gesture recognition, an accuracy of 96.3% during
k-fold cross-validation and 96.2% during inference. mmPrivPose3D has the potential for application in human workspace
localization and human-to-robot communication, particularly in contexts where privacy is a concern.

Index Terms— human-robot collaboration, RaDAR, pose estimation, gesture command recognition, deep learning, privacy

I. INTRODUCTION

The progression towards Industry 5.0, and the increasing
need for adaptable human-robot collaboration, has accelerated
the advancement of collaborative robots [1]–[3]. These robots
can boost productivity and efficiency in various industries.
This capability is crucial for addressing the labor shortages
experienced globally [4]. Despite being designed to comple-
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ment human capabilities, collaborative robots struggle with
safety at high speeds and are difficult to understand in terms
of their intentions [5]. Their rapid operation compromises
human safety, but slowing them down impacts their return on
investment and acceptance [6].

Sensor-based solutions have been implemented to estimate
the 3D position of a human in the workplace relative to the
robot’s position, ensuring safety in human-robot collaboration
and compliance with ISO 15066 regulations [7]. For example,
some techniques have used stereo vision or monocular cameras
for 3D pose estimation using different algorithms, including
CNN-based 2D pose estimation from an RGB image and
3D registration using depth images [8], multi-view 2D pose
estimation [9], and a transformer-based approach to learn
spatial and temporal correlations between joints [10]. How-
ever, such light-based sensors are susceptible to lighting and
environmental conditions [11], [12], which can compromise
their effectiveness. Additionally, these sensors raise privacy
concerns and can cause discomfort among workers and their
unions, particularly under GDPR, because the use of cameras
can be associated with constant monitoring, especially during
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work.1.
To address the limitations of light-based sensors and the

need for non-invasive sensing technologies to mitigate pri-
vacy concerns, using RaDAR sensors has been explored as
a suitable alternative [13]. These sensors offer reliable de-
tection even under harsh environmental conditions [12], [14]
and effectively track obstacles, including humans close to
robots. Often, human obstacles are represented by a single
point that encapsulates the 3D point-cloud data from the
sensor [15]. The use of FMCW RaDARs for 3D human
pose estimation has shown higher resolution accuracy than
single-representation tracking by allowing the tracking and
recognition of multiple keypoints on the human body, which
can be used and interpreted for human-robot interaction [16].
Moreover, RaDAR sensors have drawn research interest for
gesture recognition; for example, one study used a 60 GHz
FMCW RaDAR combined with a Recurrent Neural Network
(RNN) [17]. Although many studies have explored the use
of multiple RaDAR sensors in human 3D pose estimation,
there remains a gap in the literature regarding the use of a
single industry-certified 60 GHz mmWave FMCW RaDAR
such as IWR6843AOPEVM2 for real-time 3D human pose
estimation and gesture command recognition, reducing the cost
and exposure to radiation rather than using multiple sensors.

In this paper, we present mmPrivPose3D, a novel architec-
ture that uses a single IWR6843AOPEVM RaDAR sensor for
real-time pose estimation and gesture command recognition
through a parallel architecture. This method is suitable for
speed and separation monitoring compliant with ISO15066
regulations [7] and tasks that can be facilitated by human-
robot interactions such as palletizing. A demonstration video
is available at https://youtu.be/vbuGenAu3rE. The system uses
a 3D CNN architecture for pose estimation, capturing 19 3D
keypoints. Given that 3D pose estimation errors can be signifi-
cant in certain body parts that have lower RaDAR reflectivity,
such as the arms [18], [19], the system employs a random
forest classifier in parallel for gesture command recognition to
enhance accuracy. The system was trained and validated using
our mmPrivPose3D dataset [20] with the human keypoints
predicted from the RGBD images of an Intel RealSense
L515 camera serving as the ground truth. mmPrivPose3D is
suitable for shared human-robot workspaces, where privacy
sensitivity is crucial. It enables robust human tracking for
tasks involving human-robot collaboration, such as Speed and
Separation Monitoring, and human-robot interaction through
gestures while maintaining privacy [21], [22].

Our work makes the following contributions to human pose
estimation and gesture recognition using RaDAR- and Radio-
Frequency-based sensors:

• Using a gesture command recognition module in parallel
with the pose estimation module for human-to-robot
communication, addressing the larger error in the body
regions with low reflective power such as the human’s
arm.

• Open-sourcing a dataset containing ten participants per-

1https://perma.cc/S5L4-4DPH
2https://perma.cc/MU8A-LVEP

forming walking in the workspace, left-hand wave, and
right-hand wave for training the mmPrivPose3D model.

The remainder of this paper is organized as follows. Section
II provides an overview of existing approaches to human pose
estimation and gesture recognition using RaDAR- and Radio-
Frequency-based sensors. Section III presents mmPrivPose3D
parallel architecture. The system was validated, and the exper-
imental results are presented in Section IV.

II. RELATED WORK

Our study focuses on parallel pose estimation and gesture
recognition. In these topics, well-known methods such as
OpenPose [23] or MediaPipe [24] do not perform well under
varying lighting and weather conditions [25]. Our approach is
based on RaDAR- and radio-frequency-based methods aiming
to address these challenges. In this section, we summarize the
relevant approaches using these sensing technologies.

A. Antenna-based models
A Radio Frequency (RF) antenna array transmits radio

frequency signals at a power level one-thousandth that of a
Wi-Fi signal. Skeleton-tracking models that use the signals
transmitted and received by these antennas to estimate human
poses are known as antenna-based models.

In this domain, RF-pose3D was introduced [18], featuring
three models for feature extraction and a region proposal
network to detect individuals’ bounding boxes using a sliding
window for multi-person pose estimation. The architecture
performs 4D convolution and is, decomposed into 3D convolu-
tions across two planes and the time axis. An open-pose model
using a 12-camera system provides ground truth, tracking 14
keypoints over a 3-second sliding window.

However, the model has limitations, including struggles with
complex hand motions due to weaker RF reflections from
small body parts, such as the hands. It also requires specific
hardware, including a T-shaped antenna and a wide 1.78 GHz
bandwidth RF signal, which limits its practical use [18]. To
address these issues, the following section introduces a Wi-Fi-
based model.

B. WiFi-based models
One study explored the use of Wi-Fi signals for 3D skeleton

reconstructions [26]. The setup for this Wi-Fi-based model
includes one transmitter and multiple receivers to collect
the Wi-Fi signal data. This method utilizes Channel State
Information filtered from the noise of the Wi-Fi signals. The
received data are then fed as input into a deep neural network
architecture, which includes four layers of CNN and three
layers of Long Short-Term Memory (LSTM) networks, a type
of RNN known for capturing temporal dependencies in con-
secutive data samples. The model outputs features representing
human joint rotations and its accuracy is validated using 3D
keypoints from an externally installed Vicon motion capture
system. However, a significant limitation of this model is its
inability to estimate the keypoints of dynamic humans, and
the assumption that activities do not involve location changes.
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C. RaDAR-based models

1) For pose estimation: Expanding upon WiFi and antenna-
based methodologies, a study was conducted using FMCW
RaDAR [27]. The mmpose model, a prominent example
of a real-time network, distinguishes itself by identifying
15 human skeleton keypoints from RaDAR reflections. It
processes RaDAR point-clouds on both XY and XZ planes
using a forked 2D CNN. For the ground-truth calibration,
this model employed Mathworks’ skeletal tracking algorithm
via the MATLAB API of Kinect. However, this model has
several limitations. In particular, projecting a 3D point-cloud
onto two separate images, also used in another work called
MARS [28], disturbs the 3-D spatial correlation among points
[25]. Furthermore, it depended on two AWR1642 boost3

FMCW RaDARs for data capture. Additionally, the AWR line
is suitable for automotive applications but not for industrial
applications.

In the RPM approach, two identical AWR2243 RaDAR
sensors4 are used, with one positioned horizontally and the
other vertically. The two RF signals are concatenated and fed
into a Feature Fusion Network (FFN) for feature extraction,
followed by a Spatio-Temporal Attention Module to recover
the remaining body part keypoints, as the reflected signal is
only from a subset of limbs [29]. However, this model uses
two 76 to 81 GHz RaDAR sensors that are not certified for
industrial applications. In addition, the pose estimation loss
function has not taken the RaDAR data outliers into account
and it suffers from performance degradation when processing
data in a new scene as the dataset only contains walking as
human activity [29].

Finally, mmpose-FK was recently introduced as a model that
addresses the need to maintain the 3D spatial coherence by
utilizing a voxel data-processing method with a single 60GHz
IWR6843ISK-ODS RaDAR sensor and one Azure Kinect
sensor to generate ground truth joint positions. In addition, the
model has a forward kinematic layer that enhances the stability
of keypoint positions [25]. However, this model neglected the
effect of point-cloud outliers in the Mean Squared Error (MSE)
as the position loss function and was validated based on a
simple walking movement along a straight line rather than the
entire sensor’s field of view.

It is worth noting that the aforementioned approaches
demonstrated the highest keypoint Mean Absolute Error
(MAE) in the wrist and arm regions owing to their low RF
reflective power [19]. This results in missing data points in
the RaDAR point-cloud and therefore negatively influences
the accurate detection of complex hand gestures.

2) Gesture command recognition: In addition to pose esti-
mation, sensor signals can be used for gesture recognition,
for example, as a command to the robot [21]. Regarding
mmWave RaDAR, a recent approach investigated a Spiking
Neural Network (SNN) to perform gesture recognition on a
60 GHZ mmWave RaDAR over a long-range [30]. In this
approach, the RaDAR range-Doppler matrix was converted
into a 16×16 image, which served as the input for the liquid

3https://perma.cc/6ZRF-P5CK
4https://perma.cc/D3YU-9MSL

state machine model. This model sends spike signals as input
to a logistic regression for classification. Despite its superior
accuracy compared to traditional classifiers, this model has a
delay of 0.5 to 1 second in inference, which limits its real-time
capability.

In a different study using the IWR6843AOPEVM sensor, it
was observed that converting feature spectrum maps to images
required a large high amount of computational resources. The
study proposed the extraction of six feature types per gesture
from the radar’s 2D range-Doppler heatmap, and feeding them
to an Artificial Neural Network (ANN) as a multi-dimensional
parameter set [31]. However, this method takes 0.8 seconds
to estimate a gesture, which is too slow for human-robot
collaboration. For example, a robot such as the UR10e can
move 1 meter in that time, posing a danger to humans.

III. THE MMPRIVEPOSE3D ARCHITECTURE

There is increasing interest in the use of RaDAR sensors
for human pose estimation and gesture recognition. However,
the models developed thus far for pose estimation use bulky
hardware setups and RaDAR sensors that are unauthorized
for industrial usage5 and often suffer from larger errors in
wrists and hands [19]. This makes the detection of hand
gestures difficult. In this work, we propose a system called
mmPrivPose3D that aims to address both challenges by in-
tegrating pose estimation and gesture command recognition
modules through a parallel architecture to ensure an acceptable
real-life data inference time for human-robot collaboration
applications.

The mmPrivPose3D system consists of four building blocks
as illustrated in Fig. 1 including data collection, data process-
ing, model selection, and integration.

A. Data collection

In this phase, we simultaneously gathered the 3D point-
clouds of humans from an IWR6843AOPEVM RaDAR with
10 Hz data frequency and an RGBD image from an Intel
RealSense L515 camera6 with a 30 frame rate per second
(fps) as the ground truth in real-time, see Fig. 1A. This camera
was used as the ground truth to enable accurate comparisons
with previous work, which also used an RGBD camera as the
ground truth [25]. Additionally, these RGBD cameras have a
similar level of precision to the Azure Kinect [32]. An offset
between the sensors (3.9 cm in both the horizontal and vertical
directions) and a 90-degree rotation around the local x-axis
were applied to the camera data for spatial calibration and
alignment with the RaDAR’s coordinate system. In addition,
the radar is mounted 1.15 meters above the ground at the base
of the collaborative robot (cobot), similar to other sensors, such
as SICK laser scanners. Because the cobot operates at a higher
level, it does not obstruct the sensor, thereby ensuring proper
functionality and full human body coverage in a 120-degree
field of view of the sensor in azimuth and elevation. To account
for potential misalignment or drift, the experimental setup was

5https://perma.cc/YX33-RVJG
6https://perma.cc/96K7-GDC3
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A. Data collection B. Data processing

RaDAR Point cloud data

Nuitrack SDK 3D keypoints

(as ground truth)

C. Model selection

Pose estimation

(3D CNN)

Gesture command recognition

(Random forest)

D. Integration

Predicted

Ground truth

Inference visualization

Classification

Left hand wave

Intel RealSense L515

IWR6843AOPEVM

Robot

Human

Fig. 1. The mmPrivePose3D system consists of four building blocks namely Data collection, Data processing, a novel model performing pose
estimation and gesture command recognition in parallel based on FMCW RaDAR data, and Integration.

regularly inspected to verify that both alignment and mounting
distance remained consistent. Periodic recalibration checks
were performed using known reference points to maintain
accurate sensor alignment and address any shifts or drift [20].

The point-cloud, derived from RaDAR data, results from
a signal processing algorithm running on the Digital Signal
Processor (DSP) of the sensor’s evaluation module. This
algorithm performs three Fast Fourier Transforms (FFTs) on
the Intermediate Frequency (IF) signal, which is the mix of the
transmission and reflected chirps (signals with linear frequency
over time), after Analog-to-Digital Converter (ADC) sampling.
The RaDAR’s signal is at a frequency range of 60 GHz to 64
GHz and transmits new packet data from its DSP every 100
milliseconds.

In mmPrivPose3D, rather than converting RaDAR data into
images or directly processing the RaDAR User Datagram
Protocol packets in the host computer before feeding them
into the model, the data processing codes of the IF signals
involving the range FFT, Doppler FFT, and Angle of Arrival
(AoA) calculations are directly flashed into the RaDAR DSP7.
This allows the RaDAR to process the data internally and
provides a 3D point-cloud per human, which is the result
of clustering reflective points with non-zero doppler using
DBSCAN [33], as its output. This approach significantly
reduces the overall latency of the system by leveraging on-
chip processing instead of working with RAW RaDAR data.

Data collection was conducted in a public environment at
the Brubotics Lab, Vrije Universiteit Brussels. We recruited 9
male participants and one female participant, aged between 24
and 37 years, with heights ranging from 1.7 to 1.8 meters, and
diverse body sizes. It should be noted that the sensors used in
this work are independent of demographic variables such as
gender and age, as they only capture the mechanical aspects of
movement. The sensors are also not sensitive to height. While
this range may not cover all possible heights globally, it is a

7https://bit.ly/3y9WZXx

reasonable height range in Europe. This reflects our practical
and logistical conditions rather than any intentional exclusion.
RaDAR is resilient to environmental variations and therefore
supports the reliability of this dataset across different envi-
ronmental conditions [20]. The data collection was ethically
approved by the Ethics Committee for Human Sciences of the
Vrije Universiteit Brussel on 26th April 2024 (ECHW 511).
This dataset is part of our published mmPrivPose3D dataset
[20]. It features more participants than existing RaDAR-based
human pose estimation datasets such as MARS [28] (with
only four participants) and HuPR [34] (with six participants),
and it utilizes a 60 GHz RaDAR authorized for industrial
use rather than a 77 GHz RaDAR which is not authorized.
Additionally, it permits free walking across the field of view,
unlike datasets such as mmpose-NLP [35] or mmpose-FK
[25], which primarily include samples of walking back and
forth along a straight line and arm-swing activities. Informed
consent for data collection and processing was obtained from
all participants involved in the study.

B. Data processing
This section details how the training data is obtained, by

combining the frames captured by the RGBD cameras with
the frames sensed by the RaDAR. Data from both sensors
are transferred to a Linux computer via UART and USB-3
interface. This computer is equipped with an Intel Core i7-
13700H CPU and an NVIDIA A2000 Ada GPU. Our multi-
threaded Python program implements data acquisition of both
sensors concurrently. Both threads are synchronized, capturing
data from both sensors with matching timestamps and saving
them in a CSV file to form the training dataset.

The camera thread processes the RGBD image of the
L515 camera to estimate the human body’s 3D keypoints.
For this purpose, Nuitrack SDK8 was used which offers 19
keypoints for human-pose estimation. To address the missing

8https://perma.cc/6BMG-HDAC
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regions in the image caused by invalid depth data, a hole-
filling filter was applied to the depth image prior to keypoint
estimation. These keypoints were used as the ground truth for
the mmPrivePose3D pose estimation section. It is important
to note that the classical version of this SDK is unable to
distinguish between a person facing forward or backward
during keypoint identification [36].

Fig. 1B illustrates the human keypoints detected by Nu-
itrack SDK, derived from the camera’s depth image captured
alongside the RaDAR point-cloud. The algorithm running on
RaDAR DSP encapsulates the processed data into a packet.
Our custom algorithm, which operates on a Linux-based local
computer, decodes this packet in real-time in the RaDAR
thread. This decoding process is crucial for extracting the
reflection points from the RaDAR, which are essential for
constructing the point-cloud, which is a finite set of 3D co-
ordinates {(x1, y1, z1), (x2, y2, z2), . . . , (xn, yn, zn)}, for each
detected human. This data, along with the estimated keypoints
from the L515 camera, is passed with the same timestamp into
the model.

C. Model selection
1) Pose estimation: For this section of mmPrivePose3D, a

3D CNN algorithm is used. As shown in Fig. 1C-top, the
model consists of four 3D convolution layers, four pooling
layers, and two fully connected layers. This setup was selected
to achieve a balance between inference processing time that
has to happen in real-time and prediction accuracy, which is
improved by adding more convolution layers. In addition, we
use an LSTM layer to consider the temporal dependencies
and lack of enough information from human motion in a
single RaDAR frame while maintaining real-time inference per
frame. This layer aggregates information over 8 consecutive
frames. The input 3D point-cloud of RaDAR is voxelized with
fixed cube sizes of 32 cm3 within a fixed grid space of 0.84
m3 to maintain the spatial relation between the points [37].
Following each pooling layer, the model incorporates a batch
normalization layer to enhance the training efficiency.

We chose the Huber loss function [38] for its resilience
against outliers, which is a crucial attribute given the sparse
nature and outlier susceptibility of RaDAR point-clouds due
to environmental reflections. The Huber loss function uniquely
combines the elements of MSE and MAE. When the difference
between the predicted value and the ground truth is small,
the Huber loss behaves like MSE. Conversely, in instances
where this error is significantly large owing to the presence
of outliers in the data, it takes on the characteristics of MAE.
The Huber loss function is employed independently for each
3D coordinate system, as follows:

H(Y, YG, δi) =

{
(Y−YG)2

2 if |Y − YG| ≤ δi,

δi|Y − YG| − 1
2δ

2
i otherwise,

(1)
where δi is a hyper-parameter that must be tuned based on the
training results for each of the 3 axes, YG is the coordinate
of the ground truth keypoints in each of the 3 directions, and
Y represents these coordinates predicted by the model. In this
project, the above loss function was fine-tuned by assigning

specific weights to each coordinate ϕi, thereby prioritizing
the error minimization in all directions. For the x- and y-
axes, a higher weight is applied because of the RaDAR’s
heightened 3D point sparsity in these directions, as opposed
to the z-axis. Additionally, keypoints linked to human arms
are given increased importance, and separate weights (wk)
are assigned to them for enhanced precision. This is because
of the lower reflective capabilities of the arms compared to
other body parts, which significantly impacts the 3D point-
cloud data derived from the RaDAR [19]. The overall loss
calculation involves aggregating the weighted Huber losses for
all keypoints and coordinates, as follows:

L(Y, YG) =

19∑
k=1

wk ×
∑

i∈{x,y,z}

ϕi ×H (Y, YG, δi) (2)

where H represents the Huber loss function applied to each
coordinate of the 3D keypoints, wk is the extra weight applied
if keypoint k belongs to a human arm. This model predicts 19
3D keypoints of the human body using the estimated keypoints
from the RGBD camera image as the ground truth.

2) Gesture command recognition: A parallel-running ran-
dom forest classifier was implemented to identify hand ges-
tures to address the limited details captured by the pose
estimation model for the human arms and hands. The classifier
was trained using two hand gestures, see Fig. 1C-bottom.
These two gestures were selected from mmPrivPose3D dataset
as: right- and left-hand waves [20]. The dataset can be further
expanded to include other gestures that are being performed
in human-robot interactions. These gestures were performed
across three locations within the field-of-view of the sensor.
Consequently, the classifier enhances the capabilities of mm-
PrivPose3D by providing more detailed information about a
human’s hand position in parallel which can also be used for
tasks such as stopping and starting the robot or triggering
another human-robot interaction process.

D. Integration

This block integrates and threads the outputs from the mod-
els operating in parallel, delivering 19 keypoints that form the
human skeleton, accompanied by a label indicating whether
one of the trained gestures is being performed, see Fig. 1D.
A visualization environment was developed to visualize and
evaluate the output of the parallel models, displaying both the
ground truth data (depth image and Nuitrack skeleton) and the
model predictions for accuracy assessment.

IV. RESULTS

A. Pose estimation

The dataset for training the 3D CNN model was gathered
by allowing each participant to move freely within an area
covered by the 70-degree horizontal field of view of both
sensors between 2.0 and 4.0 m distance. The motions included
walking and freely waving both hands. Participants avoided
side poses to prevent body occlusion and faced the sensors
throughout. The choice of a minimum distance of two meters
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Ground truth mmPrivPose3D

Ground truth mmPrivPose3D

Ground truth mmPrivPose3D

Ground truth mmPrivPose3D

A. Walking (right)

B. Walking (left)

C. Left-hand wave

D. Right-hand wave

Fig. 2. Results of the pose estimation module of mmPrivPose3D in
selected movements compared to the ground truth. Left: L515 ground
truth depth image. Center: Ground truth depth map processed by Nu-
itrack SDK to keypoints. Right: mmPrivPose3D pose estimation. Hand-
waving is not detected which is addressed through the parallel gesture
command recognition module.

was to ensure that human safety was maintained while human-
robot interaction as it is above the reach of long collaborative
robots such as UR10e (1.3 m) [20]. From 24005 samples of 15
participants in our dataset [20], the sample of ten participants
consisting of RaDAR point-clouds and their corresponding
3D keypoints were gathered. 80% of this data was used for
training and the rest were utilized as the test set. Owing
to the hardware-neutral nature of the input point-cloud data
structure, this dataset can also be used to train models running
on other mmwave RaDAR sensors. In addition, the dataset
covers a wide range of motion as participants were asked
to perform random movements such as running or waving
while gathering the dataset. The model was trained using a
k-fold cross-validation approach to reduce the bias associated
with random sampling of the data. Out of the 10 subjects,
9 were used to train the model while the 10th was used for
evaluation as an unseen subject. The results are shown in Fig.
2 for selected movements including normal walking and hand
waves.

The model was evaluated on the test set to determine
the absolute Mean Per Joint Position Error (MPJPE) which
measures the L2 distance between the ground truth and the
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Fig. 3. Mean Per Joint Position Errors (MPJPE) and standard deviations
of 19 3D keypoints. The largest errors occurred at keypoints 8, 9, 12, and
13, corresponding to the wrists and hands – highlighted in red. The other
arm keypoints are highlighted in blue.

TABLE I
COMPARISON OF MPJPE VALUES OF ALL KEYPOINTS AND SPECIFIC

BODY KEYPOINTS AMONG DIFFERENT DEVELOPED MODELS (UNIT: MM).

Methods Neck Hip Wrist Knee All
mmPrivPose3D 38.1 38.8 57.5 46.6 48.3
RFPose3D [18] 73.7 107.6 159.4 149.5 134.1

RPM [29] 49.0 51.5 65.8 60.5 59.2
RPM 2.0 [40] 37.0 47.1 69.4 58.3 57.5

predicted joints in the world coordinates [29]. Fig. 3 shows
the MPJPE for each joint. It is noted that the largest errors
are associated with keypoints 8, 9, 12 and 13, which are
located on the wrists and hands of the left and right arms.
This observation is reasonable, considering that this body part
has a lower reflective capability [18]. To reduce this error,
integration of RaDAR reflectors on the hands was considered.
However, workers are generally averse to wearing additional
gear since it can interfere with their operations [39], and hence
was not considered an option.

We compared the performance of our pose estimation model
with previously developed models, that is, RFPose3D [18],
RPM [29], and RPM 2.0 [40]. Table I shows the MPJPE
values of all the joints among the different models9. The mm-
PrivPose3D achieved the lowest MPJPE across all predicted
keypoints. In addition, unlike the other models, our model
requires only a single industry-certified 60GHz mmWave
RaDAR for operation, which ensures a more compact form
factor of the overall setup. Nonetheless, similar to the other
models such as RPM 2.0 [40], the wrist and hand keypoints
exhibit higher error rates (max. 10 cm). In addition to the
low reflective power of these body parts [18], the small size
and fast movement of these parts may have contributed to
this error rate. Therefore, the pose estimation is insufficient
to accurately recognize hand gesture commands, as shown in
Fig. 2C-D. This further supports our decision to integrate the
gesture command recognition module in parallel with the pose
estimation module.

9The mmpose-FK model [25] was not included in the evaluation as it was
validated based on a simple walking movement along a straight line, rather
than the entire sensor field of view as other works.
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Fig. 4. Confusion matrices for evaluation of the gesture command
recognition module, indicating that the mmPrivPose3D model obtained
the overall accuracy of 96.2%, compared to 94.8% of CNN and 94.3%
of Transformer.

B. Gesture command recognition
The dataset used to train the gesture command recognition

module of mmPrivPose3D was compiled by having each
participant perform two gestures (right-hand and left-hand
waves) at different locations within the RaDAR’s field of
view. Free walking for pose estimation and left/right-hand
waves for gesture command recognition were chosen based
on their popularity in human-robot collaboration applications
[41] and relevant datasets ( [27], [16], [34], [42], [29]). Other
gestures can be trained using the same method. The dataset
was recorded separately from the pose estimation data, with
each participant given a 3-minute time window to perform
one of the two gestures in various locations. Subsequently,
an additional 3 minutes was allotted for the second gesture.
Of a total of 86483 samples in mmPrivPose3D dataset [20],
80% of the data from ten participants were utilized for model
training with 5 folds, while the remaining 20% were reserved
for validation as the 6-th fold through k-fold cross-validation.
The mean cross-validation score was 96.3%. The failure cases
can be attributed to the variation in the speed of performing
these two gestures by different participants.

We compared the performance of mmPrivPose3D with a
set-transformer model [43] and a CNN model, see Fig. 4. Our
model achieved an inference accuracy of 96.2%, higher than
the other two models. The CNN model, consisting of three
layers of convolution, pooling, and fully connected, achieved
94.9% accuracy. The set-transformer, employing an encoder-
decoder framework and multi-head self-attention, achieved
94.3% accuracy.

C. Inference
After training the modules for pose estimation and gesture

command recognition, we ran them concurrently in two par-
allel threads for real-time processing of the RaDAR data with
gesture command recognition being performed continuously
using a sliding window approach with a window size of 4
frames to have a balance between the inference time and
accuracy. Furthermore, we introduced a third thread to align
the RaDAR data with the ground-truth data of the camera,
which operates at a different frequency. The outputs from these
models were integrated into our visualization environment
along with the ground truth data of the camera, see Fig. 5. To

Fig. 5. Visualization of the integrated pose estimation and gesture
command recognition results with respect to the ground-truth data from
the camera.

assess the real-time effectiveness of our models, we measured
their inference times: the pose estimation module recorded a
20 ms inference time, and the gesture command recognition
module recorded 12 ms. Given the RaDAR data frequency
of 10 Hz, the cumulative inference time of these modules
(31 fps) affirms their real-time operational capability as it can
provide the inference result in the timing window between two
consecutive RaDAR detection frames.

V. CONCLUSION

In this study, we introduce mmPrivPose3D, a human pose
estimation and gesture command recognition system with a
parallel architecture using an FMCW RaDAR for privacy
compliance. The model uses two parallel modules. The pose-
estimation module is capable of estimating 19 keypoints. This
model demonstrated the lowest MPJPE of 48.3 mm for all
keypoints compared to prior techniques, although it exhibited
higher errors in the wrist and arm keypoints. To compensate
for this drawback, the mmPrivPose3D system incorporates
a parallel gesture command recognition module to classify
human gestures more accurately. This model achieved a 96.2%
accuracy rate in recognizing two representative gestures, that
is, right-hand and left-hand waves, and the dataset can be ex-
panded to other gestures. Future developments include expand-
ing the mmPrivPose3D dataset [20] to encompass a broader
range of gestures, using a Spiking Neural Network (SNN) as
an alternative for the parallel gesture command recognition
module to improve the accuracy of gesture recognition, reduce
the inference time, and exploring 140 GHz RaDAR which
has higher angular and range resolution owing to a higher
frequency and bandwidth [44]. In addition, the technique of
forward kinematics used in mmpose-FK [25] can be utilized on
top of the pose estimation module to provide more accurate
real-time information regarding a human’s 3D position and
performed gestures.
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