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I. THE SUBMITTED EXTENDED ABSTRACT

A. Introduction
Real-time theory has been focusing on the use of multi- and many-core chips in embedded systems for the past 2 decades [1].

While the subject has matured in the literature, the industry still widely relies on real-time operating system concepts created
during the era of single processor platforms with simple interconnect and simple memory access architectures. Very few of these
systems actually take advantage of multi-core systems and those that do rely on algorithms with proven poor performance [2].
HIPPEROS, standing for HIgh Performance Parallel Embedded Real-time Operating Systems, is a multi-core real-time operating
system (RTOS) developed at the PARTS research centre. Its main objective is to address the challenge of exploiting modern
multi-core platforms efficiently by filling this 20 year gap between theory and practice while maintaining the highest possible
reliability in safety-critical systems. While this has been attempted in the past by patching various general purpose operating
systems, HIPPEROS is designed and developed from scratch in a bottom-up rationale to avoid known issues due to legacy
code. We adopted this radical and innovative approach willing to go as far as possible to test the limits of current research
and to see how it can be implemented in a functional RTOS aiming to develop it into a commercial product. This extended
abstract introduces the challenges encountered when developing such a real-time operating system on modern multi-core
systems-on-chip. Moreover, it presents the HIPPEROS team research activities that will contribute to the state-of-the-art on a
variety of topics such as: kernel architectures to provide real-time software support to applications, efficient implementations
of new scheduling algorithms, techniques to improve the scalability of real-time applications on multi-/many-core platforms
and scheduling algorithms aware of multi-dimensional constraints such as power and thermal metrics.

B. Open problems
This section explicitly presents three research questions addressed at the PARTS research centre: 1) how should the real-time

scheduling theory be applied in real-world embedded systems? 2) How well do these algorithms scale on many-core platforms?
3) How can we minimize the environmental footprint of embedded real-time systems?

1) Testing multi-core real-time scheduling algorithms in run-time embedded systems: Researchers often turn towards Linux
when it comes to testing new multi-core real-time algorithms [3], [4]. This approach has several merits such as the reuse of
an existing operating system code base and a kernel that are already tested and validated by millions of users worldwide, but
it also has one severe drawback: Linux is not designed to handle hard real-time constraints. As it is the case for the vast
majority of software systems, a large effort has been made to optimise its average-case execution time while hard real-time
systems have to provide determinism and repeatability for the worst-case behaviour. Moreover, Linux is monolithic and does
not provide any guarantee of deadlock absence inside the complex layers of operating system mechanisms. This complexity of
the Linux kernel makes the evaluation of the kernel-related overheads very difficult. This means that most of the new real-time
multi-core scheduling algorithms have not been tested in a strict hard real-time environment yet. As stated by Brandenburg
in [2]:

Ideally, [...], worst-case kernel overheads [...] should be determined analytically. However, for the foreseeable
future, this will likely not be possible in complex kernels such as Linux. Instead, it would be beneficial to develop
(or extend existing) µ-kernels of much simpler design with LITMUSRT-like functionality.

Such a kernel would have to be built from the ground up with hard real-time and multi-core constraints integrated as
parts of the base design. This will allow for simpler, finer-grained measurements of the overheads introduced by different
implementations of the various scheduling policies the literature has to offer.

Furthermore, while popular scheduling policies have already been evaluated in a real run-time environment [2], the practical
implementation of more sophisticated and powerful algorithms (e.g. RUN [5], U-EDF [6] or power- and thermally-aware
algorithms) remains unexplored. As a consequence the applicability and the overheads related to these scheduling policies
which present interesting theoretical algorithmic properties are unknown.



2

2) The scalability issue: The multi-core paradigm is not only interesting in terms of performance; it allows to reduce the
actual number of individual uniprocessor boards in an embedded system by running functionally independent features on a
single multi-core chip. However, this regrouping tends to drastically increase both the number of tasks and number of cores
managed by the kernel. This has a large impact on kernel overheads. For example, the U-EDF scheduling algorithm, which is
theoretically optimal i.e. introduces no algorithmic capacity loss, requires to execute a routine with a complexity proportional
to the number of cores multiplied by the number of tasks at each job arrival [6].

Moreover, it is now well understood that the software architecture of multi-core kernels influences how these run-time
overheads impact the overall system. A recent study [7] shows that the standard symmetric kernel architecture does not scale
well on many-core platforms. The main solution devised in this study is to arbitrarily dedicate one of the cores to process all
scheduling decisions. This core is called the master core. Other cores, called slave cores, are under control of the master and
put its scheduling decisions to action.

It is possible to extend this approach to the whole kernel by introducing the notion of remote system call. Not only scheduling
decisions but all system calls having a potential impact on other processes should be implemented using message passing. This
is the approach we are taking in the design of the HIPPEROS kernel. The main challenge is to implement sound communication
protocols between cores but removes the need for complex kernel locks and inter-core interactions which are the main causes
behind poor scalability.

3) Power and thermal constraints in high-end processors: Power constraints are inherent to embedded systems, the most
obvious reason being that most devices are powered from a limited power supply. Thus it is of interest to optimise the
performance/power ratio. Most power reduction techniques for real-time systems use standard Dynamic Voltage and Frequency
Scaling (DVFS) [8], [9] and scheduling algorithms tailored to reduce the average power consumption [10].

In high-end devices the temperature profile of the chip must also be taken into account. A high power consumption can
induce high local peak temperatures inside the chip (i.e. hot spots). Such a rise in temperature can potentially damage the chip
if no action is taken. While this is a non-issue on most single core embedded systems today, as the number of cores rises this
will lead to the issue of dark silicon [11]: a significant portion of a chip (i.e. number of cores, cache sections [12]) has to be
powered off at any time to act as a heat sink for the other processing cores. On general purpose devices (e.g. smartphones), this
issue is addressed by using race to idle strategies. Cores are to enter a deep sleep power mode after executing their attributed
workload at maximum speed. However this introduces long wake-up latencies and can strongly contribute to the Worst-Case
Execution Time of all tasks. Recent research [13], [14] provide more nuanced solutions.

Once again, we wish to implement and evaluate these solutions in a real system. These techniques may induce potentially
large overheads and latencies which may be impractical in a hard real-time context.

II. THE TALK

This section presents information about the talk at the ACTRISS day.
This url will lead you to the slideset:
• http://bit.ly/1ebUcs5.
You can also use the QR Code given on Figure 1.
Here are some additional references used during the preparation of this presentation:
• EDF implementations: [15], [16], [17], [18]
• Scaling global scheduling: [7]
• U-EDF, P-fair: [6]
• Dark silicon: [11]

Fig. 1: URL of the presentation.

http://bit.ly/1ebUcs5
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Fig. 2: Research group and speaker information.
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