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Abstract—This preliminary study evaluates the practical real-
time capabilities of Real-Time Linux with the PREEMPT_RT
patch on the Raspberry Pi 5, using Cyclictest and various stres-
sors to simulate extreme operational conditions. By comparing
the performance and predictability of Linux kernels with and
without the PREEMPT_RT patch, we establish quantifiable met-
rics that demonstrate significant improvements in determinism
and reduced latency: notably, we observed on Real-Time Linux
a 294× shorter maximum latency than on regular Linux. Our
findings contribute to a deeper understanding of Real-Time
Linux’s potential in industrial applications. Our work aims, in
the longer term, to establish a measurement-based assessment
methodology of the real-time performance and capabilities of
real-time operating systems.

Index Terms—Real-Time Linux, PREEMPT RT, scheduling
latency, benchmarking, determinism

I. INTRODUCTION

The explosion of the number of connected devices, au-
tomation, and the increasing need for real-time operations in
various sectors have prompted the search for operating systems
that can meet strict timing requirements. Along proprietary
solutions, Linux, the open-source operating system kernel, has
seen adaptations like Real-Time Linux to address these real-
time demands [1]. Such adaptations are crucial for sectors such
as industrial control [2], automotive [3], and even in video
games [4], where milliseconds can make a difference.

Recently, the PREEMPT_RT patch series, aimed at making
the kernel fully preemptive and real-time but currently not yet
fully merged into mainline, has gained traction in the Linux
community [5], [6].

Research question. How does the implementation of Real-
Time Linux with the PREEMPT_RT patch affect the schedul-
ing latency and predictability on the Raspberry Pi 5 compared
to previous models and other platforms? The Raspberry Pi
5 introduces significant hardware improvements over its pre-
decessors, potentially offering better performance and more
deterministic behavior under real-time conditions. Evaluating
Real-Time Linux on this updated platform can provide insights
into how these hardware advancements contribute to real-
time capabilities and whether they justify (or not) the use
of the Raspberry Pi 5 in real-time applications. Our goal
is to scrutinize and understand the real-time capabilities of
Real-Time Linux and evaluate whether it qualifies as a Real-

Time Operating System (RTOS). By doing so, we aim to
establish a methodology for RTOS assessment enabling us to
compare, for example, the behaviour of Linux when applying
(or not) the PREEMPT_RT patch. This requires the definition
of metrics adapted to real-time workloads (as “fast” does not
mean “predictable”) and associated benchmarks simulating
real-time applications.

Overall project. We plan to use existing benchmarking
tools and suites, like Cyclictest [7], benchkit [8]
RTEval [9], and rtbench [10], to evaluate the impact of
the PREEMPT_RT patch on both performance and real-time
metrics. The eventual goals of this project are (1) to produce a
comprehensive analysis detailing the real-time capabilities of
Real-Time Linux on the chosen platforms, and (2) to provide
a benchmarking-based methodology that can be reused for
different hardware platforms, other versions of the kernel or
even for different RTOS.

This paper. In this experience report, we present preliminary
evaluation results of latencies measured with Cyclictest
when running on Linux, with and without PREEMPT_RT,
when the system is under heavy stressing conditions, using the
stress-ng and iperf3 stressing tools. Using that setting,
applying PREEMPT_RT results in reducing the maximum
observed latency by a 294× factor. While being currently
restricted to a single platform and a single benchmark, these
results enable us to show key differences between Linux and
its real-time equivalent.

II. BACKGROUND

A. Linux and real-time

The main goal of the PREEMPT_RT patch is to make Linux
real-time compliant by making the kernel fully preemptible.
In the long term, the patch aims to be upstreamed, merging
these real-time capabilities as build options available within
mainline Linux. As such, a lot of work from the real-time
Linux community has already been merged [11] and has even
improved Linux performance in non-real-time scenarios [12].
However, notice that it was never the ambition of the real-
time Linux community to make the Linux kernel completely
hard real-time. This would lead to the loss of a lot of
features expected from a modern general-purpose operating
system and nowadays considered standard for Linux users.



For example, in the overloaded case – when the task set
utilization is greater than the number of CPUs, i.e. there is
more work demand than the available processing capacity of
the multi-core platform – users expect higher latencies and
generally some performance loss. In a real-time environment,
such scenario must be avoided to meet the tasks’ deadlines.
Upstreaming the real-time patch would encourage more users
to try it by simply enabling the build option, therefore making
the switch as smooth as possible [11], [13].

B. Assessing real-time capabilities

Formally verifying Linux real-time capability is a challeng-
ing endeavor [14], [15], and we contend that these initiatives
must be complemented with practical testing, i.e., benchmark-
ing, as pursued in prior work [16].

In the first iteration of this project, we propose to use
Cyclictest to measure the scheduling latency of tasks
while the system is under heavy load. Cyclictest, devel-
oped by Thomas Gleixner, is the de facto benchmarking tool
for real-time Linux. It was used in many prior work [17]–[23].
Cyclictest measures the so called scheduling latency of
a real-time system — i.e., the difference between a thread’s
intended wake-up time and the time at which it actually wakes
up. The tool gets periodically invoked in order to calculate the
max, min and average scheduling latency [7]. Since the main
feature of the PREEMPT_RT patch is to make the Linux kernel
more deterministic, important metrics to benchmark system
performance are its response-time latency and jitter [16],
[21], and Cyclictest often gets used to provide these
metrics. Cyclictest “provides an easy-to-interpret metric
that reflects various sources of unpredictability as a single,
opaque measure.” [23], making it a very useful tool to quickly
compare, for example, different kernel versions. Since it is the
most widely accepted benchmarking tool for real-time Linux,
it is also very easy to compare new benchmarking results with
results of prior work.
Cyclictest often gets used together with certain stress-

ing tools [17], [18], [20]. The decision for which parts of
the system need to be stressed is usually application-specific,
but in general, studies pick stressers which put a load on
the CPU (e.g., stress-ng, phoronix-test-suite’s openssl), I/Os
(e.g., stress-ng, fio, build-linux-kernel), and networking (e.g.,
iperf ) [17], [19], [20].

Since we selected the recently-released Raspberry Pi 5 to
conduct our experiments, notice that existing performance-
related studies exist [24]. To the best of our knowledge,
although many prior work used prior Raspberry Pi models
to conduct Real-Time Linux studies [22], there are no other
reported studies assessing real-time metrics on this device.

III. PROPOSED METHODOLOGY

A. Selected hardware and OS

We ran the below stressors and benchmark on a Raspberry
Pi 5 (Model B Rev 1.0) running Debian 12. The platform
has a 2.4 GHz quad-core 64-bit Arm Cortex-A76 CPU and a
VideoCore VII GPU.

We ran our experiments in the following scenarios: (1) with
a stock kernel, version 6.6.21, and (2) with a PREEMPT_RT
patched kernel, with the same version and the compati-
ble patch. We analyzed and compared the real-time perfor-
mance of both kernels in order to determine the benefits of
PREEMPT_RT in terms of real-time capabilities. Notice that
for the stock kernel, we used the vanilla configuration provided
by the instructions on Raspberry Pi website [25]. Further
configuration tuning could lead to better results – we will
explore this as future work. To avoid extra interrupt noise due
to graphic processing, we disabled the desktop environment
and ran the experiments on the Raspberry Pi through an ssh
terminal.

B. Selected software benchmark and stressors

Stressors are used in benchmarking practices in order to
generate a computing load to push specific parts of the
system to their limit. Since we aim to assess the real-time
capabilities of Linux, we use different stressors concurrently
with Cyclictest. We expect that the combination of these
stressors will generate a system wide load to approach the
worst-case scenario – this to determine whether the RTOS still
performs deterministically under pressured circumstances.

To this end, we used stress-ng for generating CPU
and I/O load. stress-ng is a library of stressors, ranging
from tests stressing the CPU, virtual memory, file system or
memory/CPU cache [26], allowing us to generate a diverse
set of resource-intensive tasks. We also used iperf3 [27]
for generating networking load, which comes with its own set
of interrupts and service routines and thus possible sources of
latency.

Cyclictest was configured according to best practices in
the field [17], [20]–[22], using: sudo cyclictest -vmn

-i100 -p99 -t --duration=1h. Firstly, memory alloca-
tions were disabled (-m), clock_nanosleep is used in-
stead of POSIX interval timers (-n) and the output was set to
verbose in order to correctly gather the needed results (-v).
The real-time tasks that are measured by Cyclictest are
created every 100 microseconds (-i100) with a priority of
99 (-p99). The amount of tasks that is created every interval
is equal to the amount of processors of the system (-t). The
tests were run for a duration of 1 hour (--duration=1h).
As suggested by Adam [22], [28], processor affinity was
intentionally not set with --smp since this would mitigate
task migration. This is an important source of possible latency
due to potential acquisition of locks, so it should be included
in our tests. Notice that this flag was set in another study by
Oliveira [19].

stress-ng ran through docker using the following com-
mand: sudo docker run --rm colinianking/stress-

ng --all 1 -t1h 1. We decided to run all 320+ stressers
in parallel (--all 1) for a duration of 1 hour (-t1h) [17],
[20], [29]. Using all stressors in the library in order to generate
system wide CPU and I/O load was an idea lent from Delgado,
et al [20], with the only difference being that they execute
all stressors sequentially, whereas we run all of them in



(a) Latencies for the stock kernel v6.6.21, without the
PREEMPT_RT patch.

(b) Latencies for the real-time kernel v6.6.21, with the corresponding
PREEMPT_RT patch applied.

Fig. 1: Histograms of Cyclictest measured scheduling latencies for both non-real-time/real-time versions of the kernel.
The real-time kernel shows better observed latencies and better predictability.

parallel to trigger a highly demanding workload to maximize
the stressing. We expect the system to be able to handle a
multitude of different stressors at the same time, and sustain
its determinism even under heavy load. We acknowledge that
running all stressors in parallel on a Raspberry Pi 5, an em-
bedded system, introduces an unrealistic degree of parallelism.
However, our goal was to push the system to its absolute
limits to understand the worst-case scenario performance and
to stress test the capabilities of the PREEMPT_RT patch under
extreme conditions. Future work will involve more realistic
stress scenarios that reflect typical workloads encountered in
embedded systems.

iperf3 was run from a remote computer using: iperf3

-c <IP> -w 64K -P 100 -t 3800. In order to generate
networking load for our tests, the remote computer sends out
64KB packets (-w 64K) from 100 different virtual clients (-P
100) at the same time during more than an hour (-t 3800).
Notice iperf3 is a client/server application. We configured
the Raspberry Pi 5 to act as a server (by running iperf3 with
the -s flag on the Raspberry Pi 5) to receive the networking
load from the remote computer acting as the client (by running
iperf3 with the -c flag on the remote computer) [17], [20].

C. Reproducibility

We documented our system settings and reproducible
methodology on a publicly available repository1. To reproduce
our results, the provided kernel configuration must be used. To
ease the process, we streamlined the process of patching and
building Linux with/without PREEMPT_RT in a Dockerfile
and provided a README with the commands to run the
benchmarks on the target system – here the Raspberry Pi
5. In the future, we aim to create a reusable process for

1https://github.com/apaolillo/rtlinux

TABLE I: Observed scheduling latencies with Cyclictest

Average Max Std.
Stock kernel 14.69 µs 36802.00 µs 122.08 µs
RT kernel 5.91 µs 124.00 µs 3.25 µs

running stressors and benchmarks on real-time Linux (or other
RTOSes) across different hardware platforms. This will enable
us to build a large database of experiments that assess the
real-time performance and capabilities of various Platform/OS
combinations.

IV. RESULTS

Cyclictest measures the scheduling latency of four real-
time tasks on the system. These tasks are periodically woken
up every 100 microseconds for a period of one hour. During
our tests, where Cyclictest and the stressors were running
concurrently, we observed the system reached 100% CPU
load and about 70% RAM load. Figures 1a and 1b show
the measured scheduling latencies during our experiment. The
benefits of PREEMPT_RT in terms of predictability are clear.
The results for the stock kernel are very scattered, with a maxi-
mum observed latency of 36802 microseconds. In contrast, the
negative slope on the graph for the real-time kernel indicates
greater stability, with a maximum observed scheduling latency
of 125 microseconds – achieving a ×294 improvement of the
maximum observed latency. These observations, together with
the general lack of outliers on Figure 1b indicates that the
PREEMPT_RT patch succeeds in its goal of making the kernel
more deterministic.

The same results are aggregated in Table I for convenience.
Notice that the average scheduling latency also improved in the
patched system, from 14.69 to 5.91 microseconds, with a less
impressive improvement of ×2.49. This points to the fact that
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Fig. 2: Average and maximum observed scheduling latencies
with Cyclictest in our study and various prior studies.
Our own measured average and maximum scheduling latencies
are drawn as horizontal lines across the graph to ease the
comparison.

the goal of the PREEMPT_RT patch is not necessarily to make
the kernel faster but mainly to make it more deterministic for
real-time tasks. The reduction of the standard deviation further
supports this claim and indicates how much the determinism
of the kernel was improved by the patch.

In Figure 2, we compare our results obtained with the
patched kernel to a series of benchmarks gathered by Adam,
et al. [22], supplemented with some more recent studies [30],
[31]. These benchmarks were gathered from other stud-
ies which benchmarked other Raspberry Pi models with
Cyclictest [22], [30]–[38]. Notice that the objective of
this comparison is primarily to corroborate the validity of our
findings, noting that precise quantitative comparisons are not
expected. Instead, an affirmation of the order of magnitude is
sought, as the referenced benchmarks employed no stressors or
utilized different ones, yielding varying testing conditions for
the experiments. It is clear that the average scheduling latency
that we obtained is substantially better than the other results.
This was to be expected however, since these benchmarks were
run on previous iterations of the Raspberry Pi, namely the
Raspberry Pi 1, 2, 3 and 4. The Raspberry Pi 5 that we used for
our benchmarks has a CPU with a clock frequency of 2.4 GHz,
which is double the clock frequency of the CPU on for exam-
ple the Raspberry Pi 3. The leap in average scheduling latency
could thus be ascribed to the improvement in hardware, but
also to improvements in the Linux kernel or the PREEMPT_RT
patch (since other studies used different versions of those).
Results of the maximum observed scheduling latency is quite
comparable to the other results, which is a bit disappointing.
We ascribe these subpar results to the fact that we decided to
run the benchmarks on an untuned kernel for this first iteration
of our project.

V. FUTURE WORK

The next step of our project will be to further experiment
with configuring and tuning the kernel in order to get bet-
ter real-time performance results. We are confident that the
Raspberry Pi 5 can still be pushed further in order to obtain
better results. For example, kernel configuration options that
could be explored are: disabling RT-throttling, disabling CPU
frequency scaling, and raising software interrupt priority [29].
We are also interested in experimenting with the best practices
in configuring the Linux kernel for real-time as described in
the Red Hat manual [39].

As the goal of the research project is to establish a method-
ology for assessing the real-time capabilities of RTOSes, a
natural next step for comparison would also be to assess
the capabilities of other, non-Linux RTOSes, such as Zephyr,
FreeRTOS, LITMUSRT, or proprietary products. We also plan
to explore other benchmarking tools such as rt-bench [10]
or RTEval [9]. RTEval also uses Cyclictest as a mea-
suring tool but has another approach to stressing the system.
In future work, besides scheduling latency, other metrics will
be considered to complete our assessment methodology, such
as end-to-end response latency and RTOS jitter.

We will also consider running our experiments on other
hardware platforms such as other embedded systems (e.g.,
Orange Pi, Raspberry Pi 4, Rock Pi 4) or many-core processors
(e.g., AMD EPYC, Huawei Kunpeng, Ampere Altra).

Finally, we will streamline the process of getting real-time
KPIs through the benchkit [8], aiming for a fully open-source
and reproducible benchmarking pipeline.
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