
Compute Kernels as Moldable Tasks: Towards
Real-Time Gang Scheduling in GPUs

Attilio Discepoli
Vrije Universiteit Brussel

Brussels, Belgium
attilio.discepoli@vub.be

0009-0001-7100-3909

Mathias Louis Huygen
Vrije Universiteit Brussel

Brussels, Belgium
mathias.louis.huygen@vub.be

Antonio Paolillo
Vrije Universiteit Brussel

Brussels, Belgium
antonio.paolillo@vub.be

0000-0001-6608-6562

Abstract—We present a preliminary evaluation of real-time
scheduling policies for GPU kernels modeled as moldable tasks.
Our framework maps periodic real-time jobs to CUDA kernels
and uses libsmctrl to assign Texture Processing Clusters
(TPCs), enabling gang scheduling with variable parallelism.
A calibration tool provides per-kernel WCET estimates across
different TPC counts, allowing the scheduler to trade execution
time for resource usage.

We compare several scheduling strategies, including CUDA’s
default concurrent kernel execution (“all-out”), a sequential EDF
policy using all TPCs per job, and a moldable EDF scheduler
that dynamically allocates just enough TPCs to meet each job’s
deadline. Using static per-task memory allocation, we eliminate
prior sources of interference and achieve WCET predictability.

Our results show that deadline-aware scheduling outperforms
the default CUDA strategy in scenarios with urgency mismatches.
Moreover, moldable EDF improves over sequential EDF by
reducing deadline misses under non-preemptive execution, espe-
cially when long-running jobs could block shorter urgent ones.

Index Terms—GPU Partitioning, Gang Scheduling, Moldable
Tasks, WCET Estimation, Non-Preemptive Scheduling, CUDA.

I. INTRODUCTION

GPUs are increasingly integrated into real-time and safety-
critical systems, including autonomous vehicles, robotics, and
industrial automation. While their parallelism offers significant
performance benefits, GPUs remain challenging to integrate in
systems requiring predictability. One key obstacle is the lack
of fine-grained control over how GPU resources are shared
and scheduled across concurrent workloads.

In response to this, recent efforts have explored ways to
partition GPU resources, such as using NVIDIA’s Streaming
Multiprocessor (SM) partitioning feature, exposed via tools
like libsmctrl [1]. Partitioning promises isolation between
workloads by assigning subsets of SMs—called Texture Pro-
cessing Clusters (TPCs)—to different jobs. This opens the
door to applying real-time scheduling techniques such as
Earliest Deadline First (EDF), gang scheduling, or moldable
parallelism on GPUs.

Following the terminology of Goossens and Berten [2], a
parallel job in a gang scheduling system is said to be rigid if
its processor allocation is fixed externally and never changes,
moldable if the scheduler decides the allocation at release time,
and malleable if the allocation can change during execution.

In our case, the allocated resource under consideration is the
number of TPCs assigned to a kernel launch.

In this work, we explore the feasibility and benefits of
deadline-aware moldable scheduling for GPU kernels, lever-
aging runtime TPC assignment to adapt to system load. We
develop a custom CUDA scheduling framework that models
periodic real-time task sets, where each job corresponds to a
GPU kernel execution. Using libsmctrl, we assign TPC
masks at runtime based on the job’s urgency and its worst-
case execution time (WCET) profile, measured as a function
of TPC count.

We implement several schedulers, including CUDA’s default
concurrent launch policy (“all-out”), a sequential EDF policy
that assigns all TPCs to one job at a time, and a moldable EDF
scheduler that dynamically adapts job parallelism based on
deadline constraints. Our evaluation shows two key findings.
First, the “all-out” strategy, while aggressive in parallelism,
is unaware of deadlines and can underperform even simple
sequential EDF in deadline-sensitive workloads. Second, the
moldable EDF scheduler improves over both baselines by
assigning only the resources necessary to meet each job’s
deadline, thus avoiding deadline misses—particularly in non-
preemptive scenarios where greedy jobs might otherwise block
shorter, urgent ones.

These results demonstrate that combining SM partitioning
with moldable real-time scheduling can outperform default
GPU execution strategies, and offer a promising direction for
predictable GPU integration in real-time systems.

II. FRAMEWORK OVERVIEW

We developed a custom runtime framework for evaluating
GPU scheduling strategies under a real-time task model. Each
task corresponds to a periodic stream of GPU jobs, imple-
mented as CUDA kernels, and is characterized by a period,
relative deadline, and kernel type. The kernel type of a task
defines the specific workload executed by its jobs. It implicitly
determines the Worst-Case Execution Time (WCET) of a job
as a function of the GPU resources (e.g., TPCs) assigned to
it, as detailed below. All jobs are released on a fixed periodic
schedule and are executed non-preemptively. The scheduler is
invoked on each job release and completion event to determine
which jobs to run next and how to assign GPU resources.
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Fig. 1. Execution times (top row) and speedups (bottom row) of CUDA kernels under increasing TPC count (from 1 to 12). Compute-bound kernels
(FlopBurn, MatMul, Reduction) show near-linear speedups, closely tracking the ideal scaling line (dashed). Stencil1D also scales well, but with
diminishing returns due to memory reuse patterns (non-coalesced accesses). In contrast, memory-bound kernels (VecAdd4MB) saturate early, showing limited
speedup beyond 4-6 TPCs. These results are used by the scheduler to estimate empirically the worst-case execution time as a function of TPC count.

SM Partitioning and TPC Masks. To control GPU re-
source usage, we use libsmctrl, a library that enables fine-
grained partitioning of NVIDIA GPUs by restricting kernels to
specific subsets of Streaming Multiprocessors (SMs). On our
GPU model, a TPC corresponds to two SMs, and the TPC
mask of a job defines the subset of SMs it is allowed to run
on. This allows the scheduler to enforce isolation policies by
selecting non-overlapping TPC masks for concurrent jobs.

Scheduler and Policy Interface. The framework supports
pluggable scheduling policies. Schedulers implement a uni-
form interface and maintain their own internal state, such as
the list of pending jobs. The interface consists of:

• on_job_release(GpuJob*)

• on_job_complete(GpuJob*)

• std::vector<GpuJob*> select_jobs_to_run()

For example, EDF-based schedulers use a priority queue
internally, sorted on absolute deadlines, and allocate TPCs
based on job urgency. All scheduling decisions are made
online and are executed by a central loop that launches
jobs using their assigned TPC masks. This design enables
experimentation with various scheduling policies, including
those supporting parallel jobs. We support:

• seq-edf: a sequential EDF policy where jobs run one
at a time with all TPCs;

• global-edf-1tpc: each job runs with one TPC,
allocated greedily;

• moldable-edf: each job is assigned the smallest TPC
count that satisfies its WCET–deadline pair;

• all-out (baseline): every job is launched immediately,
in a default-priority CUDA stream, with a full TPC mask
(i.e., no partitioning). On current NVIDIA GPUs, the
Task Management Unit (TMU) and Work Distribution
Unit (WDU) dispatch such kernels in FIFO order within
each priority level [1]. Because all our streams use the
default (equal) priority and no kernels spawn child kernels
(i.e., no CUDA Dynamic Parallelism), the dispatch order
is reproducible across repeated runs of the same task set.
This policy represents the default behavior of the CUDA
runtime.

WCET Calibration. To estimate per-job execution time
under different TPC configurations, we developed a WCET
calibration tool. This tool runs each kernel type in isolation
across 1 to N TPCs and records execution times. These
measurements populate a per-kernel-type WCET vector made
available to the scheduler. During execution, the scheduler can
use this vector to reason about how many TPCs to assign to
a job in order to meet its deadline.

Task-Based Memory Management. To ensure consistency
and eliminate memory-related timing anomalies, each task acts
as a “vessel” for its jobs, encapsulating both the kernel type
and the memory buffers needed for execution. At program
startup, each task allocates the required data structures in GPU
device memory; these buffers are then reused by every job
released by the task, avoiding any per-job allocation or deallo-
cation during execution. This setup prevents host-to-device and
device-to-host data transfers during execution, ensuring that all
data resides in GPU memory throughout the experiment. It also
isolates compute behavior from interference caused by shared
memory traffic or copy engines—issues we leave to future
work. This design significantly improves timing predictability.
In earlier experiments, dynamic allocations and implicit data
transfers introduced substantial timing noise and unintended
synchronization effects, as also observed by Yang et al. [3].
With this simplification, execution times became remarkably
more stable, and WCET overruns were largely eliminated.

Experimental Testbed. All experiments were conducted
on an NVIDIA RTX 2000 Ada Generation Laptop GPU,
a discrete GPU with 24 Streaming Multiprocessors (SMs),
corresponding to compute capability 8.9. The system was con-
figured with NVIDIA driver version 570.133.20 and CUDA
toolkit version 12.8.

Frequency Control. To reduce variability and ensure re-
peatable WCET measurements, we disabled dynamic fre-
quency scaling (DVFS) and fixed both the core and memory
clocks using nvidia-smi. Specifically, we enabled persis-
tence mode and locked the graphics and memory clocks to
2115 MHz and 7001 MHz, respectively: nvidia-smi -pm
1, -lgc 2115, -lmc 7001,7001. This eliminates one
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Fig. 2. Impact of TPC placement on execution time for a fixed TPC count (k = 4). Each subplot corresponds to a different CUDA kernel and shows
execution time variation across all valid 4-TPC masks (out of 12 total). Only a few representative masks are shown on the x-axis for readability. Compute-
and memory-bound kernels exhibit consistent runtimes regardless of which TPCs are selected, suggesting minimal sensitivity to placement.

major source of temporal jitter and ensures that observed
WCET overruns are not artifacts of frequency throttling.

III. WCET SCALING AND PLACEMENT SENSITIVITY

To support moldable scheduling and inform resource allo-
cation decisions, we precompute the execution time of each
CUDA kernel type across different levels of parallelism. Our
WCET calibration tool executes each kernel in isolation using
TPC masks ranging from 1 to 12 active TPCs, and records the
corresponding execution times. The kernels used in this study
span a range of compute and memory intensities:

• FlopBurn: a compute-bound kernel that performs re-
peated trigonometric operations to saturate the floating-
point ALUs,

• MatMul: a tiled matrix multiplication using shared mem-
ory, representative of structured compute workloads,

• Reduction: a parallel reduction that combines shared
memory and atomic operations, with moderate control
divergence,

• Stencil1D: a 1D stencil operation with neighborhood data
dependencies and moderate memory reuse,

• VecAdd1MB / VecAdd4MB: simple element-wise vector
additions over 1MB or 4MB arrays, limited by global
memory bandwidth.

Figure 1 shows the measured WCETs of these kernels
and the corresponding speedups as a function of TPC count.
Compute-bound kernels such as FlopBurn and MatMul
scale nearly linearly with the number of TPCs, achieving close
to ideal speedup. Memory-bound kernels such as VecAdd1MB
and VecAdd4MB, however, exhibit diminishing returns be-
yond 4–6 TPCs. Stencil1D kernels fall in between: they
benefit from parallelism but scale sub-linearly.

These WCET profiles are exposed to the scheduler at
runtime and enable reasoning about the trade-off between
parallelism and execution time of a job, based on the number
of TPCs it is assigned. They serve our moldable scheduler’s
decision process, which aims to assign the minimum number
of TPCs needed to meet a job’s deadline.

To assess the robustness of these measurements, we con-
ducted a sensitivity study on TPC placement. Even when the
number of assigned TPCs is fixed, the specific SMs selected
(i.e., the bit pattern of the TPC mask) could, in principle, affect
execution time due to undocumented architectural asymmetries

or locality effects. We fixed the number of active TPCs to
k = 4 and systematically evaluated each kernel across all valid
TPC masks with exactly four bits set, resulting in 495 unique
placements out of 12 TPCs. Note that the bit logic in our masks
is inverted relative to the convention used by libsmctrl:
a bit set to 1 denotes an active TPC in our encoding. Each
mask configuration was executed 50 times following a warmup
phase. Figure 2 summarizes the resulting distributions. We
observe no significant impact of TPC placement on execu-
tion time. Compute-intensive kernels such as FlopBurn,
MatMul, Reduction, and Stencil1D exhibit narrow and
consistent distributions across all placements. Even memory-
bound kernels like VecAdd1MB and VecAdd4MB do not
exhibit systematic sensitivity to SM selection. These results
confirm that, in isolation, WCET is primarily determined
by the number of assigned TPCs rather than their physical
placement.

IV. CASE STUDIES: WHEN SCHEDULING MATTERS

To highlight the practical implications of deadline-aware
scheduling on GPUs, we present two representative case
studies drawn from our experiments. These scenarios illustrate
how CUDA’s default policy and simple sequential execution
can both fail under real-time constraints, and how moldable
scheduling can mitigate deadline misses.

A. Study 1: Deadline Awareness vs. Parallelism

This scenario compares seq-edf with the baseline
all-out strategy. The taskset consists of five identical jobs.
Four of them are tasks with a period and deadline of 100 ms,
while one is an “urgent” task with a 10 ms deadline. All jobs
execute the same kernel and share the same WCET profile,
but the urgent task has significantly tighter timing constraints.

Under all-out, all five jobs are launched concurrently at
each release. CUDA’s default scheduling policy, as noted by
Bakita et al. [1], admits kernels in FIFO order with limited
prioritization. This means that once a kernel is submitted, all
of its blocks must complete before newer kernels can begin
execution—even if those newer kernels correspond to more
urgent tasks. As a result, the urgent job may be delayed by
earlier, less time-sensitive work, leading to deadline misses
despite ample compute resources.



20 40 60 80 100
Execution Time (ms)

Task 1

Task 2

Task 3

Task 4

Task 5

Ta
sk

s
First Job per Task - ''all-out'' policy

(a) all-out: jobs are launched con-
currently. CUDA queues and sched-
ules them in FIFO order. Urgent tasks
are not prioritized.

20 40 60 80 100
Execution Time (ms)

Task 1

Task 2

Task 3

Task 4

Task 5

Ta
sk

s

First Job per Task - ''seq-edf'' policy

(b) seq-edf: jobs are scheduled one
at a time in EDF order. Urgent tasks
are executed early and meet their
deadlines.

Fig. 3. Case study 1: Comparison between deadline-unaware (all-out)
and deadline-aware (seq-edf) scheduling. Each job uses all TPCs (12), and
the taskset contains one urgent task (Task 5) with a tighter deadline. Red
crosses mark job deadlines. Under all-out, Task 5 misses its deadline due
to lack of prioritization. In contrast, seq-edf prioritizes it correctly, and all
deadlines are met.

In contrast, seq-edf enforces a strict priority order based
on absolute deadlines, running one job at a time using all
TPCs. Although this strategy reduces concurrency, it ensures
that the most urgent job is executed first, preventing unneces-
sary deadline violations.

Figure 3 shows the resulting Gantt chart: while all-out
suffers from misprioritized execution, seq-edf guarantees
the timely completion of the urgent job.

B. Study 2: Resource-Aware Scheduling under Non-
Preemption

This scenario compares seq-edf and moldable-edf
on a two-task workload with non-preemptive execution. The
first task is a “greedy” long-running job with a WCET of
1250 ms when using all 12 TPCs, and 7500 ms when limited
to 2 TPCs. It has a period of 10 s and a relaxed deadline of
10 s. The second task releases short, urgent jobs with a WCET
of approximately 265 ms on 2 TPCs and 25 ms on 12 TPCs,
and with a period of 500 ms and a relative deadline of 300 ms.

Under seq-edf, jobs are executed sequentially using all
12 available TPCs. At the start of the hyperperiod, both tasks
release their first jobs. Since the urgent job has an earlier
deadline, it is correctly scheduled first. However, subsequent
jobs of the urgent task arrive while the greedy job is executing
and are blocked until it completes. Because execution is non-
preemptive, the urgent jobs cannot reclaim GPU resources
mid-execution and thus miss their deadlines. In contrast,
moldable-edf dynamically estimates the number of TPCs
required to meet each job’s deadline based on the precomputed
WCET table. It assigns only the necessary TPCs to the greedy
job, leaving enough TPCs free to schedule the urgent job
concurrently. As a result, moldable-edf avoids blocking
and ensures both tasks remain schedulable.

Figure 4 shows the Gantt chart highlighting this difference:
only moldable-edf successfully schedules both tasks with-
out deadline misses.
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(a) seq-edf: urgent jobs (orange)
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enabling concurrent execution. All
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Fig. 4. Case study 2: Job execution timelines across TPCs. Each horizontal
bar represents a kernel execution on a specific TPC. Red crosses mark
job deadlines. Moldable scheduling avoids deadline misses by spatially
multiplexing tasks.

These results show that moldable scheduling, when com-
bined with SM partitioning, has the potential to enable higher
schedulability even in non-preemptive systems.

V. LIMITATIONS

Our evaluation is preliminary and subject to several limita-
tions that we plan to address in future work.

Resource isolation. While our framework allows fine-
grained TPC partitioning, kernel executions are calibrated
and evaluated in isolation, without concurrent memory traffic
or host-side interference. Real-world deployments may ex-
perience shared resource contention—e.g., across L2 cache
slices, DRAM channels, or copy engines—which could im-
pact both execution time and predictability, particularly for
memory-bound kernels. As future work, we plan to extend
our WCET analysis with interference-aware calibration, us-
ing co-scheduled background kernels to quantify slowdowns
under contention. This will complement the results shown in
Figure 2, where execution times were measured in isolation.

CUDA baseline behavior. We compare against CUDA’s
default kernel execution behavior, which typically launches
kernels in FIFO order across streams. We do not explore
alternative configurations enabled by the CUDA runtime, such
as per-stream priorities or CUDA Graphs, though these could
influence deadline satisfaction under certain workloads.

Application coverage. The current evaluation is limited
to synthetic kernels with predictable structure and compute-
dominated profiles. While useful to showcase scheduling be-
havior, real-world GPU workloads—such as DNN inference
or sensor fusion—will be explored in future studies.

Formal analysis. Finally, no formal schedulability analysis
is provided in this work. We focus on empirical evaluation;
integrating analytical models (e.g., response-time analysis) and
characterizing worst-case interference under shared resource
contention are important next steps.

VI. RELATED WORK

Gang scheduling has long been explored in real-time sys-
tems to coordinate parallel workloads under predictable exe-



cution models. Nelissen et al. [4] introduced a response-time
analysis framework for non-preemptive, periodic moldable
gang tasks, establishing schedulability bounds under job-level
fixed-priority (JLFP) policies.

Bakita et al. [1] proposed libsmctrl, a user-space mech-
anism for SM-level partitioning on NVIDIA GPUs, enabling
spatial isolation via explicit control over the TPC mask.
Our framework builds on this mechanism to support real-
time schedulers that explicitly allocate GPU resources to
individual jobs at runtime. Follow-up work [5] showed that
SM partitioning alone does not ensure isolation, due to
shared resource interference from memory controllers, copy
engines, and internal arbitration mechanisms. These insights
informed our framework design, particularly the need for
static memory allocation. Ali et al. [6] recently introduced
the Streaming Multiprocessor Locking Protocol (SMLP),
which supports predictable intra-component GPU access by
dynamically resizing GPU workloads to fit available SMs.
SMLP is designed for component-based systems scheduled
with JLFP inside time-sliced partitions, and offers analytical
bounds on priority-inversion blocking. Their evaluation cou-
ples simulation-based blocking analysis with a brief hardware
sweep—using libsmctrl to measure how one kernel’s
WCET scales with the number of SMs—to motivate the
resizing model. Our work is complementary: we implement
a moldable EDF scheduler on real CUDA hardware, calibrate
WCETs for several kernels across TPC counts, and measure
deadline behaviour under multiple scheduling policies. This
empirical perspective lets us quantify the practical benefits of
moldable gang scheduling for task sets with heterogeneous
deadlines.

VII. CONCLUSION

We presented a preliminary evaluation of real-time schedul-
ing strategies for GPUs using SM partitioning enabled by
libsmctrl. Our framework models CUDA kernel execu-
tions as periodic tasks, performs WCET calibration across
TPC counts, and supports a variety of scheduling strategies,
including deadline-unaware (all-out), sequential EDF, and
a moldable EDF policy. Through controlled case studies, we
demonstrated that deadline-aware scheduling can outperform
CUDA’s default strategy, and that moldable EDF further
improves schedulability by minimizing blocking under non-
preemptive execution.

This work opens the path toward non-preemptive gang
scheduling on GPUs by leveraging SM partitioning. As future
work, we plan to develop a full-fledged moldable scheduler
tailored to GPU architectures, along with formal schedulability
analysis. This includes extending the moldable model to
sporadic workloads by tracking per-task cooldown intervals—
i.e., known idle phases after job completion that allow safe,
temporary reuse of reserved resources.

To further improve timing predictability, we will extend our
WCET analysis to evaluate the impact of inter-kernel interfer-
ence. Such analysis should also be conducted on real-world
GPU applications; For instance, Bakita et al. [1] reported
results for TPC partitioning on a YOLO workload.

A deeper investigation into memory-related effects—such
as copy engine contention and device memory allocation
overhead—is an important direction for future work.

Finally, we aim to explore the feasibility of true malleable
scheduling, where TPC allocations can be updated dynami-
cally during kernel execution—provided such capabilities are
supported on current or emerging GPU architectures.
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