 ECRTS

OSPERT 2025

Compute Kernels as Moldable Tasks

Towards Real-lime Gang Scheduling in GPUS

Attilio Discepoli ~ Mathias Huygen ~ Antonio Paolillo

o8 1y ARE
7~ 'J L ANGUAGES
| LAB

Massive parallelism

Are everywhere

Example of GPU code

__device compute _edges(Image P) { Run on GPU
// Compute the edges of the 1mage

int 1 = blockIdx.x * blockDim.x + threadIdx.x;
// -- snip --
}

while (active) {
P = get picture();

compute edges<<<N>>>(P); RUF]OFICPLI
walt period(30ms);

)

Unpredictability

Not really suitable for real-time systems
where deadlines are important

Reason: 13ck of fine-grained control over
(GPU resource scheduling (Rernel)

The CUDA default execution model is focused on
performance and not deadlines

Fven with the compute capabilities of the GPU, deadlines
can still be missed due to poor prioritization

(Question

What it we model GPU Rernels as jobs with deadlines?

CUDA executes all the Rernels in FIFO order, giving
all the resources

All-out scheduling policy

« All-outy» because it takes all the GPU resources available

All-out scheduling policy

The CUDA default ex

ecution mod

Fxample with 5 tasks (D=100ms)

No probl

om wh

on th

0 £3SRS

nave ample time-to-deadline

Task 1
Task 2
Task 3
Task 4

Task 5

First Job per Task

20 40 60 80
Execution Time (ms)

X

100

10

All-out scheduling policy

But when a task nas 3
higher priority = deadline missec

Fxample with
4 tasks (D=100ms)
1 urgent task (D=10ms)

Task 1

Task 2

Task 3
Task 4

Task %=

First Job per Task

20 40 60 80
Execution Time (ms)

100

11

As fast as possible is not real-time

17

What it we use a real-time scheduling algorithm?

We will use EDF (Earliest Deadline First)

13

Scheduler is now deadline-aware

EXam p‘e \/\/IJ[h (Same as the second all-out exp.)
4 tasks (D=100ms)
1 urgent task (D=10ms)

The highest priority task is now
scheduled correctly

Sequential-EDF scheduling policy

Task 1
Task 2
Task 3
Task 4

Task 5

First Job per Task

40 60

Execution Time (ms)

100

Recap: All-Out vs Sequential-EDF

Task 1
Task 2
Task 3
Task 4

Task 5

First Job per Task

20 40 60 80
Execution Time (ms)

% All-Out

100

Task 1
Task 2
Task 3
Task 4

Task 5

First Job per Task

20 40 60 80
Execution Time (ms)

v Sequential-EDF

100

15

What it we insert a « greedy » task in the system ?

10

EXamp

Sequential-EDF scheduling policy

o \With

First Job per Task
1 greedy task (D=10s)
1 urgent task (D=300ms, g Toskl
T=500ms) " Tash2 | x * "

N.B. : Tasks are non-preemptive

The greedy task taRes all the resources

n

e sch

odul

or yses the GPU as a single core machine

250

500

750 1000 1250
Execution Time (ms)

1/

Need to ind a way of limiting a task so that it uses only
the amount of resources required to meet its deadline

What about leveraging partitioning ?

18

Intermezzo: Anatomy of a GPU

Shared Memory

SFU

Intruction fetch/dispatch

Instruction L1

Streaming Multiprocessor
(SM)

orouped in

exture Processing Clust

(TPC)

19

We can use the TPCs as processors in a multiprocessor
system and partition them among tasks

20

. o 11
The Tibsmctr1* enables to select 10

on which TPCs a Rernel is executed

A task will not consume the same
execution time depending on
the number of TPCs used

TPC
O MNWRAUIO O WO

Intermezzo: Partitioning of GPU

TPC View

[
[
[
[

250 500 750 1000 1250
Execution Time (ms)

Same task run on various TPCs count

21

Gang scheduling terminology | Goossens 2010]

“Ajobis said to be
rigid it its processor allocation is fixed externally and never changes,
moldable it the scheduler decides the sllocation at release time, and

malleable if the allocation can change during execution”

SS
‘ V

23

Gang scheduling terminology applied to GPUs

“Ajobis said to be
rigid if its TPC allocation is fixed externally and never changes,

moldable if th

0 Sch

odul

or decides the TPC allocation at rel

2dS

malleable if the TPC allocation can change during execution”

e time. and

Sequential-EDF is rigid, we will introduce Moldable-EDF

Sequential-EDF scheduling policy

Like all-out, the sequential-EDF (rigid)
ojves all the computational resources
to each task

TPC

O HF N WP U OO WO
) ¢

| —

[t there is 3 job with hi%her
priority when another longer

one is running = deadline missec

TPC View

B

250 500 750 1000 1250
Execution Time (ms)

2

ldea: Moldable-EDF scheduling policy

11

A moldable EDF would only assign 10
the needed amount of TPCs ;
to finish the job 7

o 0

=
With a moldable po\ic’% together :
with libsmctrl, the scheduler can 2
decide the number of TPCs per .

zernel at job release time

TPC View

2000 4000 6000 8000 10000
Execution Time (ms)

20

How can we Rnow how many TPCs are needec
to respect the deadline?

2/

WCET Profiling

We empirically compute the kernel's WCET
on each number of TPC

1. Warmup the Rernel several times

2. Run the Rernel several times, by using 1 to 12 TPCs

3. Record the worst observed ex

ocution tim

0 3nd use it as

3 reference in the scheduler

TPC

O NWPAUIO NJO WO

e
o

C:ﬂ WCET of jobs of tasR i when assigned m TPCs

1 4 12
Ci ci Ci
TPC View TPC View TPC View

= =
o
= =

TPC

Ml

aRaasannanil

TPC
O NWPAUIO NO WO

250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250
Execution Time (ms) Execution Time (ms) Execution Time (ms)

29

Now we have partitioning information
that can be used by our moldable scheduler
to Rnow the number of TPCs needed to
execute the job correctly

30

Moldable-EDF scheduling policy

Scheduler is now deadline and 11 1 Hew
[eS0Urce-aware Y
:
Fxample with = g
1 greedy task (D=10s) 3 } 1
1 urgent task (D=300ms, o [TTTTTTTTTTTTT

T=500ms) 2000 4000 6000 8000 10000

(Same as the second seq-edf exp.) Execution Time (ms)

Recap: Sequential-EDF vs Moldable-EDF

TPC View TPC View
11 11
10 H % 10
9
o 1 1 ;
7 I 7
2 O ® 2 11 o O
— 5 1 M — 5
4] 4
3 [0 [1] 3 | | i
2 ” % 2 | |
1 1
4 I S [TTTTTTITTITTT
250 500 750 1000 1250 2000 4000 6000 8000 10000
Execution Time (ms) Execution Time (ms)
% Sequential-EDF v Moldable-EDF

32

Limitations

Kernel executions are calibrated and evaluated in isolation

We do not explore alternative CUDA configurations
(e.g: static priority assignement)

Fvaluation is limited to synthetic Rernels
without complex memory accesses.

33

What's next?

Use real-world kernels (Al, image processing, etc.) and study the
memory model of NVIDIA GPUs more in depth (Copy engine)

Explore the feasibility of malleable scheduling in GPUS

xecute our experiments on NVIDIA Jetson Orin

Analyze formally the scheduler

34

ThanR you!

Juestions?

Exec. Time (ms)

Speedup

30
20
10

10

FlopBurn

12 4 6 8 10 12
TPC Count

30
20
10

10

Stencil1D

12 4 6 8 10 12
TPC Count

5/

Placement sensitivity

FlopBurn

00000000TTII
O0TTO00TO00T
OTTO0000TO0TO
000TOOTTTOO00
o i o TTT100000000

(Sw) awi] *39X3

TPC Mask

