
Compute Kernels as Moldable Tasks
Towards Real-Time Gang Scheduling in GPUs

Attilio Discepoli Mathias Huygen Antonio Paolillo

OSPERT 2025

2

GPUs

Massive parallelism

Are everywhere

3

Example of GPU code

while (active) {
 P = get_picture();

compute_edges <<<N >>>(P);
 wait period(30ms);
}

Run on CPU

__device__ compute_edges(Image P) {
 // Compute the edges of the image
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 // -- snip --
}

Run on GPU

4

Unpredictability

Not really suitable for real-time systems
where deadlines are important

5

Reason: lack of fine-grained control over
 GPU resource scheduling (kernel)

The CUDA default execution model is focused on
performance and not deadlines

6

Even with the compute capabilities of the GPU, deadlines
can still be missed due to poor prioritization

7

Question

What if we model GPU kernels as jobs with deadlines?

8

CUDA executes all the kernels in FIFO order, giving
all the resources

All-out scheduling policy

9

«All-out» because it takes all the GPU resources available

10

The CUDA default execution model

No problem when the tasks
have ample time-to-deadline

Example with 5 tasks (D=100ms)

Task 1

First Job per Task

Execution Time (ms)
20 40 60 80 100

Task 2

Task 3

Task 4

Task 5

All-out scheduling policy

11

But when a task has a
higher priority =>= deadline missed

Task 1

First Job per Task

Execution Time (ms)
20 40 60 80 100

Task 2

Task 3

Task 4

Task 5

All-out scheduling policy

Example with
4 tasks (D=100ms)
1 urgent task (D=10ms)

12

As fast as possible is not real-time

13

What if we use a real-time scheduling algorithm?

We will use EDF (Earliest Deadline First)

14

Task 1

First Job per Task

Execution Time (ms)
20 40 60 80 100

Task 2

Task 3

Task 4

Task 5

Sequential-EDF scheduling policy
Scheduler is now deadline-aware

Example with (Same as the second all-out exp.)

4 tasks (D=100ms)
1 urgent task (D=10ms)

The highest priority task is now
scheduled correctly

15

Task 1

First Job per Task

Execution Time (ms)
20 40 60 80 100

Task 2

Task 3

Task 4

Task 5

Task 1

First Job per Task

Execution Time (ms)
20 40 60 80 100

Task 2

Task 3

Task 4

Task 5

Recap: All-Out vs Sequential-EDF

All-Out Sequential-EDF

16

What if we insert a «greedy » task in the system ?

17

Tas
ks Task 1

First Job per Task

Execution Time (ms)
250 500 750 1000 1250

Task 2

Sequential-EDF scheduling policy

The greedy task takes all the resources
The scheduler uses the GPU as a single core machine

Example with
1 greedy task (D=10s)
1 urgent task (D=300ms,

Example with
1 greedy task (D=10s)
1 urgent task (D=300ms,

N.B. : Tasks are non-preemptive
T=500ms)

18

Need to find a way of limiting a task so that it uses only
the amount of resources required to meet its deadline

What about leveraging partitioning ?

19

Intermezzo: Anatomy of a GPU

Shared Memory

Intruction fetch/dispatch

Core
SFU

Instruction L1

Streaming Multiprocessor
(SM)

SMSM SM
Texture Processing Clusters

(TPC)

grouped in

20

We can use the TPCs as processors in a multiprocessor
system and partition them among tasks

21

Intermezzo: Partitioning of GPU

TP
C

TPC View

Execution Time (ms)

Same task run on various TPCs count

250 500 750 1000 1250

11
10

9

5
4
3
2
1
0

8
7
6

A task will not consume the same
execution time depending on
the number of TPCs used

The libsmctrl* enables to select
on which TPCs a kernel is executed

*[Bakita RTAS23]

22

“A job is said to be
rigid if its processor allocation is fixed externally and never changes,
moldable if the scheduler decides the allocation at release time, and
malleable if the allocation can change during execution”

Gang scheduling terminology [Goossens 2010]

23

But how to achieve «processor allocation » in GPUs?

24

“A job is said to be
rigid if its TPC allocation is fixed externally and never changes,
moldable if the scheduler decides the TPC allocation at release time, and
malleable if the TPC allocation can change during execution”

Gang scheduling terminology applied to GPUs

Sequential-EDF is rigid, we will introduce Moldable-EDF

25
TP

C

TPC View

Execution Time (ms)
250 500 750 1000 1250

11
10

9

5
4
3
2
1
0

8
7
6

Sequential-EDF scheduling policy

Like all-out, the sequential-EDF (rigid)
gives all the computational resources
to each task

If there is a job with higher
priority when another longer
one is running =>= deadline missed

26

Idea: Moldable-EDF scheduling policy

TP
C

TPC View

Execution Time (ms)
2000 4000 6000 8000 10000

11
10

9

5
4
3
2
1
0

8
7
6

A moldable EDF would only assign
the needed amount of TPCs
to finish the job

With a moldable policy, together
with libsmctrl, the scheduler can
decide the number of TPCs per
kernel at job release time

?

27

How can we know how many TPCs are needed
to respect the deadline?

28

WCET Profiling

We empirically compute the kernel’s WCET
on each number of TPC

1. Warmup the kernel several times
2. Run the kernel several times, by using 1 to 12 TPCs
3. Record the worst observed execution time and use it as
 a reference in the scheduler

29

TP
C

TPC View

Execution Time (ms)
250 500 750 1000 1250

11
10

9

5
4
3
2
1
0

8
7
6

Ci
1 Ci

4 Ci
12

TP
C

TPC View

Execution Time (ms)
250 500 750 1000 1250

11
10

9

5
4
3
2
1
0

8
7
6

TP
C

TPC View

Execution Time (ms)
250 500 750 1000 1250

11
10

9

5
4
3
2
1
0

8
7
6

C i
m

WCET of jobs of task i when assigned m TPCs

30

Now we have partitioning information
that can be used by our moldable scheduler

to know the number of TPCs needed to
execute the job correctly

31
TP

C

TPC View

Execution Time (ms)
2000 4000 6000 8000 10000

11
10

9

5
4
3
2
1
0

8
7
6

Example with
1 greedy task (D=10s)
1 urgent task (D=300ms,

T=500ms)

Moldable-EDF scheduling policy

(Same as the second seq-edf exp.)

Scheduler is now deadline and
resource-aware

32
TP

C

TPC View

Execution Time (ms)
2000 4000 6000 8000 10000

11
10

9

5
4
3
2
1
0

8
7
6

Recap: Sequential-EDF vs Moldable-EDF

Sequential-EDF Moldable-EDF

TP
C

TPC View

Execution Time (ms)
250 500 750 1000 1250

11
10

9

5
4
3
2
1
0

8
7
6

33

Limitations
Kernel executions are calibrated and evaluated in isolation

We do not explore alternative CUDA configurations
(e.g: static priority assignement)

Evaluation is limited to synthetic kernels
without complex memory accesses.

34

What’s next?
Use real-world kernels (AI, image processing, etc.) and study the
memory model of NVIDIA GPUs more in depth (Copy engine)

Explore the feasibility of malleable scheduling in GPUs

Execute our experiments on NVIDIA Jetson Orin

Analyze formally the scheduler

Thank you!

Questions?

37

30
20
10

10

5

1 2 4 6 8 10 12

TPC Count

FlopBurn

Sp
ee

du
p

Ex
ec

. T
im

e (
ms

)

30
20
10

10

5

1 2 4 6 8 10 12

TPC Count

Stencil1D

38

Placement sensitivity
FlopBurn

10

5

0

TPC Mask

00
00

00
00

11
11

00
01

11
00

10
00

01
00

10
00

01
10

10
00

10
00

11
00

11
11

00
00

00
00

Ex
ec

. T
im

e (
ms

)

