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Abstract—Ensuring timely and safe operation in robotics
remains a challenge, especially in systems combining high-
throughput perception with real-time safety constraints.
SentryRT-1 is a minimal C++/CUDA runtime that integrates
multi-camera sensing, GPU-accelerated human detection, and a
safety module enforcing Speed and Separation Monitoring (SSM)
robot control. In this case study, we model the runtime as a
real-time task set and evaluate its behavior under various Linux
kernel configurations. Using synthetic interference and replayable
camera inputs, we benchmark the latency and determinism of the
safety module. Our results show that real-time scheduling policies
such as SCHED_DEADLINE significantly reduce both average
and worst-case reaction times, and that a real-time kernel with
PREEMPT_RT provides further—though less pronounced—
improvements. These findings demonstrate the capabilities of
Linux-based configurations for safety-critical robotic workloads.

Index Terms—Real-Time Systems, Collaborative Robotics,
Safety-Critical, Human-Robot Interaction, Real-Time Linux, Per-
ception Pipeline, Speed and Separation Monitoring

I. INTRODUCTION

Driven by global labor shortages and the accelerating au-
tomation trend, robotics is rapidly expanding across indus-
tries, particularly in manufacturing [1], [2]. Historically, most
robotic deployments occurred in greenfield installations—
factories built for automation, typically with fenced-off robotic
cells where robots operate at high speed and isolated from hu-
mans to ensure safety and throughput [3]. However, many pro-
duction tasks still rely on manual labor—so-called brownfield
environments—where automation is introduced incrementally
and workspace is often limited [4]. Examples include phar-
maceutical packaging, machine tending, and kitting. In these
cases, traditional caged robots are impractical due to spatial
constraints and the need for continuous human cooperation.

Collaborative robots (cobots) equipped with Power and
Force-Limiting (PFL) capabilities can safely operate alongside
humans without physical barriers [5]. However, PFL relies on
contact-based stopping, which may still cause injuries and im-
poses strict speed limitations. To overcome these constraints,
robots are increasingly equipped with on-robot perception sen-
sors to enable safety through Speed and Separation Monitoring
(SSM) [6], standardized by ISO10218 [5], allowing dynamic
speed adjustment based on human proximity.
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Fig. 1. Overview of the SENTRYRT-1 platform. (A) The physical setup
including a UR10e robotic arm, a ring of five cameras, and a light signaling
module. (B) Monitoring windows displaying 5 replay data streams and the
virtual light module. (C) URSim, the robot simulation environment.

Achieving such responsiveness requires low-latency, pre-
dictable execution across sensing, inference, and actuation
pipelines. Linux-based systems—widely used in modern
robotic stacks—are attractive due to their ecosystem and
hardware support, but it remains unclear how well they
meet real-time constraints in these safety-critical scenarios.
In particular, there is limited understanding of how different
Linux configurations affect end-to-end timing in perception-
driven safety loops. This paper addresses this gap through
an application-driven analysis of real-time performance under
representative a robotic workload.

Our prototype system, illustrated in Figure 1A, consists of
a Universal Robots UR10e manipulator, five Intel RealSense
D435i depth cameras mounted around the end-effector, an
industrial x86 PC with a discrete NVIDIA GPU, and a light
signaling module [7] controlled via the robot’s digital I/O.



The hardware is able to operate both in live mode — using the
setup of Figure 1A — and in simulation — using URSim [8]
(Figure 1C) and replayable camera streams. To drive this setup,
we develop SENTRYRT-1, a C++/CUDA software runtime
that integrates multi-camera perception with GPU-accelerated
human detection and a safety module enforcing proximity-
based speed control. The system avoids middleware such as
ROS, providing direct control over threading, memory, and
data flow. A screenshot of the live perception and safety
feedback is shown in Figure 1B.

In this paper, we model this runtime as a real-time task
set and evaluate it under different Linux configurations—
including PREEMPT_RT and SCHED_DEADLINE—to as-
sess their ability to meet real-time constraints under syn-
thetic interference that models high computational demand.
Our benchmarking framework supports replayable inputs
and repeatable stress conditions, allowing systematic evalu-
ation of safety responsiveness under load. Our results show
that SCHED_DEADLINE significantly improves reaction time
compared to baseline Linux, while the real-time kernel with
PREEMPT_RT provides further improvements.

II. RELATED WORK

Significant research has been conducted within the real-time
computing and robotics communities to design and evaluate
the performance of robotic software frameworks.

ROS. The most widely adopted framework is ROS2 [9],
which promotes modularity in robotic system design and
uses Data Distribution Service (DDS)-based inter-process
communication to transfer data between components. ROS2
adopts an event-driven callback mechanism, making timing
analysis based on processing chains of components a nat-
ural approach [10]-[12]. Tang et al. [10] analyze response
times across processing chains, modeling and improving the
behavior of ROS2 executors to optimize task scheduling and
system-level response time. Teper et al. [11] evaluate timing
performance using two metrics—maximum reaction time and
maximum data age—based on cause-effect chain analysis
in ROS2-based autonomous robotic systems. However, prior
work [13]-[16] has shown that the DDS-based IPC in ROS2
can introduce millisecond-level delays in data transmission
between nodes. In contrast, shared-memory communication
in pure C++ implementations incurs significantly lower trans-
mission delays. Moreover, bypassing the ROS2 framework
substantially reduces software footprint and debugging com-
plexity. Developers gain finer control over execution paths and
avoid the performance overheads and abstraction layers intro-
duced by middleware [17], [18]. Teper et al. [19] show that the
ROS2 multithreaded executor is prone to starvation, leading
to unbounded response times. These limitations motivate our
design independent of the ROS2 framework.

Benchmarking. Bakhshalipour et al. present Rowild [20],
a comprehensive cross-platform performance benchmark for
various mobile robotic systems. It reports end-to-end execution
times and identifies algorithmic bottlenecks. RobotPerf [21]
introduces a benchmarking framework tailored to robotic

workloads implemented as ROS2 computational graphs. It
supports both black-box and grey-box testing methodologies
to evaluate real-time performance across diverse hardware
platforms. However, the framework is tightly coupled with the
ROS2 ecosystem, limiting its use in non-ROS2 systems. Both
studies do not consider the impact of scheduling policies or
kernel configurations, nor do they provide a timing model.
Soft real-time scheduling. To address this gap, Sifat et
al. [12] propose a safety-performance metric that explicitly in-
corporates timing considerations in real-time robotic systems.
Their approach uses heterogeneous processing units (e.g., CPU
and GPU) modeled through a stochastic heterogeneous parallel
DAG (SHP-DAG). They evaluate their method using both
FIFO and CFS schedulers. However, these schedulers are not
designed to meet the hard real-time requirements of safety-
critical robotic systems. In contrast, our work explores the use
of the real-time scheduling policies and preemptive kernels,
which is more suitable for ensuring real-time guarantees.
Evaluate real-time constraints and kernels. Tools such as
cyclictest [22] and Timerlat [23] have been developed
to measure execution latency and trace its root causes. The
recent tool LiME [24] automatically derives task models from
real Linux workloads. We previously evaluated the impact of
the PREEMPT_RT patch using a Raspberry Pi 5 [25], showing
its benefits in reducing latency and improving determinism,
which motivated further investigation in robotic settings.

III. SYSTEM DESIGN OVERVIEW

Our system is designed to enable cage-free human-robot
workspaces by combining GPU-accelerated perception with
reactive SSM safety control in a tightly integrated runtime.
The hardware includes the following components (Fig. 1A):

e A URI10e [26] industrial robotic arm with an OnRobot
VG10 suction gripper [27], connected via LAN to the
central computer;

« Five Intel RealSense D435 [28] depth cameras, mounted
around the robot Tool Center Point (TCP) on a custom
3D-printed fixture, connected via USB-C (3.2) to the
central computer;

o A central computer equipped with an Intel 19-14900KF
processor (32 CPUs), an NVIDIA GeForce RTX 4060 Ti
(8 GB VRAM), and 2 TB solid-state storage;

o An Atmel ATmega-based Antropo light signaling mod-
ule [7], [29], connected to the robot’s 24V digital 1/O,
providing status feedback: safety stop (red), slowed mo-
tion (orange), normal operation (green).

The software is implemented in C++ and CUDA, without
ROS or external middleware, in order to reduce latency and
maintain full control over scheduling, memory allocation,
and data exchange. This design also facilitates fine-grained
debugging, step-through inspection, and performance monitor-
ing, which are often obscured by middleware like ROS [17].
Figure 2 illustrates the structure of the system software and
its data flow, highlighting the timing-critical path from camera
acquisition to safety actuation. Below, we describe the key
software components of our runtime environment.
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Fig. 2. Task graph of the SENTRYRT-1 runtime. Perception threads process
camera input and write detection results to shared buffers, which are consumed
by the SSM thread. The SSM and Arm control threads issue commands to
the UR robot for motion and signaling. Visualization threads read images and
detections to render annotated views. The critical path is shown in red.
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Camera acquisition module. Each RealSense camera is
polled at 30 FPS to retrieve aligned depth and RGB frames.

Perception module. A neural network detects and segments
humans in the RGB frames, then computes their 3D positions
by projecting the segmentation masks onto the corresponding
depth images. The positions of humans and distances to the
robot’s Tool Center Point (TCP) are produced and passed to
the SSM module for evaluation.

Trajectory control module. The robot executes predefined
missions (e.g., picking and placing boxes with the suction
gripper), following motion trajectories programmed via the
Real-Time Data Exchange (RTDE) protocol [30] provided by
Universal Robots, using the UR RTDE library [31].

SSM module. A continuously running safety loop monitors
the distance between detected humans and the robot’s Tool
Center Point (TCP). When a predefined safety threshold is
breached, the module dynamically reduces the robot’s speed or
halts its motion if the separation distance becomes too small.
To implement this behavior, SENTRYRT-1 currently uses the
RTDE speed slider interface [32]'. Once the minimum re-
quired distance is re-established, the robot resumes its normal
operating speed [5].

All components run as C++ std: :threads, exchanging
data via shared memory buffers. Inter-thread communication
follows a double-buffering pattern, where one thread writes
to a back buffer while another reads from a front buffer.
This design enables non-blocking data exchange with minimal
locking, reducing synchronization overhead and jitter. Al-
though the SSM loop is the final enforcement point for safety
decisions, its effectiveness depends on timely and reliable data
flowing through the perception pipeline—including camera
acquisition and inference threads that lie on the critical path.
This motivates a real-time analysis of the system as a whole.

Why real-time matters. Under high system load, race
conditions or scheduling delays in the acquisition threads can
lead to stale or empty frames entering the pipeline. From the
perspective of the SSM logic, this is functionally equivalent to
real-world occlusion: in both cases, the robot loses visibility

Future work will integrate certified safety interfaces, such as PROFIsafe.

TABLE I
SENTRYRT-1 TASK SET CHARACTERIZATION.

Task Function Period Deadline  Criticality
Tssm SSM 2ms 2ms High
Tp, Perception (cam. 7) 33 ms 33 ms High
Tarm Arm mission control Seconds N/A Low
Tv; Visualization (cam. 7)  Best-effort N/A Low

of its environment. To ensure safety, the system must detect
such degraded input and trigger a precautionary stop (i.e., red
light), but this requires that the SSM thread itself maintain
real-time guarantees. If it too is delayed or starved, these
safety violations may go undetected, resulting in unbounded
latency or unsafe robot behavior. These observations highlight
the need for real-time task modeling and motivate our experi-
ments, which quantify reaction times under stress conditions.

Implementation. The current prototype is structured around
a single main () function, which launches threads for per-
ception, visualization, arm motion, and safety monitoring.
Each perception thread handles both camera acquisition and
inference for one sensor (i.e., combining camera acquisition
and perception modules), writing its results to shared detection
buffers. The SSM thread runs periodically, reading the latest
detections from all detection buffers, and issues speed updates
to the robot, status signals to the LED module. Visualization
threads render annotated RGB-frames to the screen for debug-
ging and user feedback but are not latency-critical.

IV. REAL-TIME MODELING

To evaluate the real-time behavior of our robotic perception
and control system, we model the runtime as a set of interact-
ing real-time tasks, each corresponding to a core thread in the
implementation. Our goal is to understand how different Linux
configurations impact the end-to-end responsiveness of the
SSM module—the latency-critical component responsible for
enforcing safety constraints. This analysis must also consider
upstream dependencies on perception threads (camera acqui-
sition and GPU-accelerated inference), which share compute
resources with the SSM loop and may introduce contention
under load. Table I summarizes the system’s tasks and their
timing characteristics, which we detail below.

Perception Tasks (7. ). For each camera ¢, a dedicated
thread performs image acquisition and human detection in-
ference. These tasks are periodic, with an intended execution
rate of 30 Hz (i.e., period of 33.3ms). Each perception thread
writes to a shared double buffer consumed by the SSM and vi-
sualization threads. Inference execution time varies depending
on the GPU and frame content, but results must be produced
within one frame interval to maintain pipeline stability.

SSM Task (7gm). This task runs periodically with a period
and deadline of 2ms (i.e., 500Hz). It reads the latest detec-
tions from all perception buffers, computes human-to-robot
distances, and updates the robot’s speed and LED signals.
This task represents the final safety-critical decision point and
must complete execution within each period to ensure timely



intervention in case of human proximity. The 2ms budget
reflects the worst-case latency for effective speed modulation.
Since the task polls perception outputs every 2ms, a new
detection may wait up to one period before being processed
by SSM thread; combined with a 2 ms execution deadline, this
results in a worst-case reaction time of 4 ms. Failure to trigger
a safety control input to stop the robot in the provided time
constraint significantly increases the risk of injury.

Arm Control Task (7,m). This task executes a pre-defined
pick-and-place routine via the robot’s controller interface. It
is not latency-sensitive and is scheduled as best-effort.

Visualization Tasks (7y,). Each perception thread is paired
with a UI thread that overlays human detection results on
RGB frames and displays annotated output for monitoring and
debugging purposes (see Figure 1B). These threads are non-
critical and excluded from our real-time evaluation. However,
they share buffers with both perception and SSM threads, in-
troducing potential contention in a mixed-criticality setting—a
topic we leave for future work.

V. EVALUATION
A. Goals and Methodology

Our evaluation focuses on how Linux kernel configura-
tions and scheduler policies affect the real-time behavior of
SENTRYRT-1 under load. We aim to understand the respon-
siveness and determinism of the perception and SSM loops,
which are critical for enforcing human-robot distance con-
straints. We structure our investigation around the following
research questions:

o RQI1: How does the system’s reaction time degrade under

increasing CPU interference?

o RQ2: How do different scheduling policies (CFS, RR,
SCHED_DEADLINE) impact latency guarantees?

e RQ3: What influence does the choice of Linux kernel
(generic, lowlatency, realtime) have on worst-
case and average latency?

To answer these, we run a series of stress tests on the
system while varying scheduler policies and kernel builds.
Experiments are repeated across two modes: Virtual camera
mode, pre-recorded camera streams replayed from disk to
simulate identical sensor input, and Physical camera mode,
live streams from five Intel RealSense cameras attached via
USB-C. Each run lasts 30 seconds and is repeated 3 times per
configuration to capture variability. The experiments process
is automated using the benchkit open source tool [33].

B. Task Mapping and Scheduling Policies

Each functional module in SENTRYRT-1 (e.g., perception,
safety monitoring) is implemented as a dedicated C++ thread
using std::thread. We refer to these as main threads.
However, they rely on several external libraries—such as Intel
RealSense, TensorRT, OpenGL, and UR RTDE—which inter-
nally spawn additional subthreads to handle frame acquisition,
inference execution, LED control, and robot actuation.

This architecture introduces a challenge: assigning a
scheduling policy to the main thread alone does not guarantee

real-time behavior if its subthreads continue to run under the
default SCHED_OTHER policy, which lacks real-time guaran-
tees. In the presence of CPU interference, these subthreads
may be preempted, delaying or even blocking the main thread
and breaking end-to-end timing guarantees.

To address this, we implement a mechanism to dynamically
identify all threads spawned by each main thread and apply a
user-specified fallback scheduling policy to their subthreads.
While we cannot assign SCHED_DEADLINE to subthreads—
since doing so requires explicit knowledge of their execution
parameters (e.g., runtime, deadline, period)—we evaluate a
fallback option throughout the following combinations.

DL+CFS. Main threads use SCHED_DEADLINE; sub-
threads remain under the default SCHED_OTHER policy.

DL+RR. Main threads use SCHED_DEADLINE; subthreads
are assigned SCHED_RR with a fixed static priority of 50.

RR+RR. Both main and subthreads are assigned
SCHED_RR with fixed priority of 50.

CFS+CFS. Both main and subthreads use the default
SCHED_OTHER policy. This reflects the unmodified behavior
of standard Linux deployments.

This workaround—falling back on the SCHED_RR priority
class for opaque subthreads—highlights a key limitation of the
current Linux real-time scheduling API: assigning a schedul-
ing policy to a parent thread does not automatically propagate
to its child threads, necessitating manual intervention to ensure
consistent timing behavior across all execution contexts.

For all threads assigned SCHED_DEADLINE, the
runtime, deadline, and period parameters are
configured based on the expected execution rates and
constraints of each task, as summarized in Table I. Subthread
priorities are equal within each configuration, and thread
pinning is not enforced, allowing the Linux scheduler to
dynamically manage core assignment. The arm mission
control and visualization tasks are considered non-critical and
remain scheduled under the default SCHED_OTHER policy.

To simulate non-critical interfering workloads—such as OS
background tasks or network stack activity—we launch a
configurable number of noise threads (from 0 up to 128, to
test the limit of the system under high load) using the default
SCHED_OTHER policy. Each thread executes a tight loop
of relaxed atomic increments and decrements on a dummy
counter, designed to saturate CPU pipelines. On our system
with 32 logical CPUs, launching more than 32 such threads
guarantees oversubscription and exposes the impact of CPU
interference on real-time tasks.

C. Kernel Variants

In addition to scheduling policy, the kernel configuration
plays a role in determining the responsiveness and latency
behavior of real-time applications. We compare three Linux
kernel variants provided by Ubuntu 22.04 [34], all based on
version 5.15.0:

e generic (5.15.0-138-generic): The standard
Ubuntu kernel with voluntary preemption. It is optimized



TABLE II
EXPERIMENTAL VARIABLES AND THEIR EXPLORED VALUES.

Variable Values

Camera mode Physical (D435i) / Virtual (dataset)
generic / lowlatency / realtime

SCHED_DEADLINE (DL) / SCHED_RR (RR) /
SCHED_OTHER (CFS)

SCHED_RR (RR) / SCHED_OTHER (CFS)
0/16/32/64/128

Linux kernel
Main threads policy

Subthreads policy
Noise thread count

for throughput and general-purpose workloads, but lacks
guarantees on worst-case latency.

e lowlatency (5.15.0-138-1lowlatency): A soft
real-time kernel variant enabling more aggressive pre-
emption to reduce interrupt handling latency and jitter.

e realtime (5.15.0-1082-realtime): A more pre-
emptible real-time kernel distributed via Ubuntu Pro. It
includes the PREEMP T_RT patchset, which converts most
interrupt handlers into schedulable threads and supports
bounded latencies.

D. Metric Collected

To ensure the robot does not collide with humans, the
primary metric evaluated is the reaction time of the system’s
timing-critical path. We define reaction time as the duration
between the arrival of a new input frame and the completion of
the first job of the SSM task 7, that processes this frame.
Since T, runs at a significantly higher frequency than the
perception tasks 7, , the system’s reaction to an input frame is
effectively determined by this first polling instance of 7, that
corresponds to that frame; later instances for the same frame
only maintain the current safety status until a new frame is
available. This definition allows us to isolate the latency of the
system’s critical path—from sensor input to safety actuation—
and to measure how kernel and scheduling decisions affect
timely responsiveness under varying interference levels.

We evaluate both the worst-case and average-case reac-
tion times across all frames in each run. Each experimental
configuration is repeated 3 times, and we report the aggre-
gated statistics (max and mean across repetitions) to capture
variability and ensure repeatability. Table II summarizes the
experimental variables and their explored values.

E. Results and Discussion

RQ1: Reaction time under interference. We begin by ana-
lyzing how the system’s reaction time is affected by increasing
CPU load, using configurations that vary the number of noise
threads. Figure 3 shows that under the default CFS+CFS
policy, both average and worst-case reaction times degrade
rapidly once the number of noise threads exceeds the number
of logical CPUs (32 on our platform). This is expected: critical
tasks such as 7, and 7y receive no prioritization and must
contend equally for CPU time.

In contrast, policies that assign real-time priorities to these
threads (e.g., RR+RR, DL+RR, DL+CFS) remain resilient even

under high contention. This confirms that prioritization—
especially for perception and safety-critical threads—is essen-
tial to maintain bounded latency.

RQ2: Impact of scheduling policy. Across all interference
levels, both DL+RR and RR+RR configurations show signif-
icant improvements in worst-case and average-case reaction
time compared to CEFS+CFS. These two policies are largely
on par in our experiments, maintaining stable latency under
load and shielding the critical path from CPU interference. The
lack of a clear performance gap between DL+RR and RR+RR
is explained by the system’s ample resources: with 32 logical
CPUs and relatively low per-task utilization, each real-time
thread can be effectively isolated. In more constrained systems,
where real-time tasks must share cores or operate closer to full
CPU utilization, we expect the benefits of EDF-based schedul-
ing (e.g., deadline enforcement and bandwidth guarantees in
SCHED_DEADLINE) to become more pronounced.

We observe outliers even under real-time configurations.
For example, under the DL+RR policy on the generic
kernel with O noise thread and virtual cameras, the worst-
case reaction time spikes to 81 ms. This is attributable to the
unpredictability of GPU inference workloads, which in this
case consumed up to 77 ms—far beyond the nominal 33 ms
perception period. This underscores a key limitation: while
the CPU scheduling is protected, tasks offloaded to the GPU
may still introduce non-determinism.

RQ3: Kernel comparison and jitter. To examine the
impact of kernel variants on timing variability, we zoom in
on individual experimental runs. Figure 4 shows per-frame
reaction times for a single run of each kernel configuration
under fixed load (128 noise threads) and constant schedul-
ing policy (DL+RR). This fine-grained view shows that the
realtime kernel (with PREEMPT_RT) provides lower jitter
and tighter latency bounds than both the generic and
lowlatency kernels. However, its impact is smaller than
that of the scheduling policy itself. This suggests that most
benefits stem from correct prioritization and task isolation
rather than kernel-level preemption improvements alone.

Highlighted setting. Under a top-performing setup—real
camera input, high interference (128 noise threads), and
DL+RR scheduling on a realtime kernel—the system re-
acts within 44-70 ms worst-case and 15-17 ms average. The
default (CFS+CFS, generic kernel) shows 353 ms worst-
case and 117ms average. This yields about 80% and 85%
reductions in worst-case and average times, respectively.

Summary of findings. These results support the conclu-
sion that real-time Linux configurations—with explicit pri-
oritization of safety-critical tasks and runtime visibility into
subthreads—can significantly improve latency determinism in
robotics workloads. Yet challenges remain: in particular, GPU
tasks such as human detection are opaque to the scheduler
and can lead to deadline violations even without CPU in-
terference. This motivates further work in designing GPU-
aware scheduling models, group-based deadline policies, or
extending Linux with budget inheritance mechanisms across
threads and heterogeneous resources.
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Fig. 3. Reaction times using physical and virtual cameras under different scheduling policies on various Linux kernels. Each 30-second experiment collects
all reaction times (worst and average) per configuration. We repeat each experiment 3 times; bars represent the median value across the 3 runs, with error bars
showing the minimum and maximum. Using the critical path deadline (37.3 ms) as a reference, the DL+RR policy with physical cameras meets the deadline
as long as the number of noise threads does not exceed 32. Average reaction times for RR+RR, DL+CFS, and DL+RR also remain below this threshold.

Real-time scheduling policies yield significantly lower reaction times than the default CFS+CFS policy under system interference.
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Fig. 4. Sample distribution of system reaction times on generic,
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to a single 30-second run using physical cameras, the DL+RR policy, and
128 noise threads. While the average reaction times on the generic and
lowlatency kernels are nearly identical, the realt ime kernel reduces the
average by 3 ms. Moreover, the reaction time distribution under realtime
shifts leftward, with a higher concentration of samples below the critical path
deadline. Despite this improvement, all kernels experience deadline misses,
primarily due to the unpredictable execution time of GPU tasks.

These experiments support the design direction of
SENTRYRT-1, which aims to serve as a lightweight safety
perception layer for robotics. An runtime capable of supporting
real-time embedded systems with GPU acceleration and modu-
lar real-time scheduling is a key requirement for deployments.

VI. CONCLUSION

This paper presented SENTRYRT-1, a minimal C++/CUDA
runtime that integrates multi-camera sensing and GPU-
accelerated human detection for safety-critical robot control
without middleware. By modeling the system as a real-time
task set and evaluating its responsiveness under various Linux
kernel and scheduler configurations, we demonstrated that
proper use of SCHED_DEADLINE combined with a real-time
kernel (with PREEMPT_RT) can significantly improve both

average and worst-case reaction times. Compared to the default
setup (CEFS scheduler, generic kernel), our configuration
reduced worst-case reaction time by 80% and average time
by 85%, even under high CPU interference. This underscores
the viability of Linux-based systems for enforcing Speed and
Separation Monitoring (SSM) constraints.

To further improve performance under high interference, we
plan to use the timerlat [23] tool to analyze deadline miss
conditions, and use the LiME [24] tool to further refine the
task model. Our results expose limitations in the current Linux
real-time scheduling API, especially its inability to manage
multi-threaded real-time tasks as unified entities. Ensuring
consistent scheduling across main threads and library-spawned
subthreads is a manual and error-prone process. This motivates
the need for future work on group-level scheduling, graceful
SCHED_DEADLINE inheritance, and deeper integration of
scheduling policies with real-world runtime dependencies.

Beyond scheduler design, several other factors warrant in-
vestigation: the impact of thread pinning, I/O and memory con-
tention, GPU sharing between critical and non-critical tasks,
and interference from network traffic or unpredictable thread
placement. Newer kernel features such as EEVDF scheduling,
or alternative platforms including embedded SoCs like Jetson
or heterogeneous CPU architectures with Performance- and
Efficient-cores (e.g., Intel Alder Lake), offer further opportu-
nities to test and refine our assumptions. Finally, extending
SENTRYRT-1 to support heterogeneous sensor fusion, both
rule-based and Al-driven scene interpretation, and modular
perception pipelines will help evaluate its applicability in
increasingly complex collaborative robotic scenarios.
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