SentryRT-1: A Case Study In
Evaluating Real-Time Linux for
Safety-Critical Robotic
Perception

Yuwen Shenxti, Jorrit Vander Mynsbruggex#, Nima Roshandel*t$, Robin Bouchezx1, Hamed FirouziPouyaei*t,
Constantin Scholzxt, Hoang-Long Cao*§, Bram Vanderborghtx$, Wouter Joosent, Antonio Paolillox
*Vrije Universiteit Brussel, Belgium, TKU Leuven, Belgium
timec, Belgium, §Can Tho University, Vietnam

L SAF E BOT m .
HUMAN ROBOTICS l]]] e c
RESEARCH CENTER

. - O

"@ '.' SOFTWARE (&

N J LANGUAGES 8
LAB

Industry robot - cobot

Performance

Cobot - safe perception

Safety by contact Safety by perception

Motivation

Robot: Safety & Performance ((a

Real-time constraints O Q’)
Reaction time /
Linux configurations 7\

J
» Scheduling policies: SCHED_DEADLINE A
o Kernels: PREEMPT_RT Reaction time

SentryRT-1 [Sensor]L[ComputerJl{ Robot J

Hardware view

Intel 19-14900KF (32 CPUSs)
NVIDIA GeForce RTX 4060 Ti

(

Computer}

semsor

A. Physical setup

Setup: physical

_ \ | Light module |
UR10e Robot, sensing ring, light module X '(/—Schgngrg's
5 cameras as input | |
Physical

Human detection
GPU accelerated NN

Speed and Separation Monitoring (SSM)

Human close to robot
- robot speed adjustment

Visualization
Images of each camera

| |
Setup: virtual

UR10e Robot / URSIm

5 cameras as input
Physical / Virtual

Human detection
GPU accelerated NN

Speed and Separation Monitoring (SSM)

Human close to robot
- robot speed adjustment

Visualization
Images of each camera

Concern about neural network?

Preliminary version
- does have miss detection

WIP: Deterministic version
- watchdog of NN 0
- working on a certifiable software 7so) (S (s 1

SentryRT-1: focus on the timing

Software framework: perception

Camera l
(30 fps)

Image Human DEIEEUZihisOI’;S
detection
N
GPU engine
Image Segmentation
camera 1 of human
for camera 1
< FIFOqueue >

\

&

Image
camera 3

Neural network

J

Image
camera 2
/

Software framework: buffer

Camera 1l Human
(30 fps) detection

Detections

< Double buffer

Detections

(backbuffer)

M

Detections 1

(frontbuffer) J |

\

/ :

‘Detections
L >

Software framework; SSM

Buffer: detections |
camera 5 |

Critical path

Software framework

=
Buffer: image ——| Visualisation thread
~camera1_ camera 1
S | =
»Buffer: detection|

—__cameral

E

Visualisation thread

camera 2]

Arm control

: thread
X 5 in total &_—]

Task model

Tasks in critical path: Reaction time A Other tasks:
1< 33.3ms >1< 4ms >1 Visualisation :hread
)

Perception task Visualisation task
Up; l Ty,

Wait in buffer Ar?h:::;g
l Arm control task

SSM task

T
T ssm T=2ms

SCHED DEADLINE

Perception task SSM task
(cam i)

inline sched_attr set_sched_deadline(uinté4_t runtime, uinté4_t deadline, uinté4_t period) {

\] |\] |\ J

- l 1 1

Parameters!

Subthread scheduling

* Perception task (cam i) Problem:

tpi Assigning a real-time policy
e Intel RealSense .
to a main thread does not

:-IC-)eF?eSr?gT_T propagate to its subthreads.
* SSM task Workaround:
Tssm - Automatically apply
* URRTDE SCHED RR with fixed priority

to subthreads.

Subthread scheduling

 Perception task (cam i
I ain threads ubthreads
P - () Abb Main thread Subthread
pi
* Intel RealSense CFS+CFS |SCHED OTHER | SCHED OTHER
* TensorRT
* OpenGL RR+RR |SCHED RR SCHED RR
e SSM task
- DL+CFS |SCHED DEADLINE |SCHED OTHER
sSSm
* UR RTDE DL+RR | SCHED DEADLINE |SCHED RR

Configurations

Scheduling policy i
Linux kernel Nms:):::ead Camera
main+subthreads
CFS+CFS generic 0 ?Bﬁ';a)l
16 |
RR+RR X lowlatency X > X virtual
DL+CFS realtime 64 (dataset)
DL+RR 128

X 3 repeats, 30 sec for each run

Default CFS setting degrades

Average Reaction Time with Physical Cameras

- == (Critical Path Deadline: 37.3 ms
100 -

i generic / CFS+CFS
75 | lowlatency / CFS+CFS
realtime / CFS+CFS

Average Reaction Time (ms)

50 =
e e s e e T——
25 -)
Illllll'lll Illlllll g il R S R
o LIE .

0 16 32 64
Number of noise threads

Real-time scheduling policies keep stable

Average Reaction Time with Physical Cameras

- == (Critical Path Deadline: 37.3 ms
100 -

generic / CFS+CFS
75 lowlatency / CFS+CFS
realtime / CFS+CFS

Average Reaction Time (ms)

realtime / DL+RR
50 -
o i e e el ol
25 4 i
|I|IIII'|.1 III|I'II 'R P AR el 1A
0 . I 1 |

0 16 32 04 128
Number of noise threads

Other combinations are similar

Average Reaction Time with Physical Cameras

= == (Critical Path Deadline: 37.3 ms
100 -

Average Reaction Time (ms)

128
Number of noise threads

Kernel / Sched Policies
B generic / CFS+CFS B generic/ DL+CFS B |owlatency / CFS+CFS e lowlatency / DL+CFS Bl realtime / CFS+CFS BN realtime/ DL+CFS
[generic / RR+RR generic / DL4+RR B lowlatency / RR+RR lowlatency / DL+RR B realtime / RR+RR realtime / DL+RR

Worst-case reaction time Is more variable

Worst Reaction Time with Physical Cameras

- == (Critical Path Deadline: 37.3 ms

200 -

100 -

Worst Reaction Time (ms)

300 - 67.3ms reaction time

37.6ms GPU

Number of noise threads

Kernel / Sched Policies

B generic [CFS+CFS B generic / DL4+CFS B lowlatency / CFS+CFS
[generic / RR+RR generic / DL+RR B lowlatency / RR+RR

e lowlatency / DL+CFS
m lowlatency / DL+RR

|

80%

128

B realtime / CFS+CFS BN realtime / DL+CFS
I realtime / RR+RR realtime / DL+RR

Virtual camera results are similar

Physical Camera { Virtual Camera |

_ Worst Reaction Time with Physical Cameras Worst Reaction Time with Virtual Cameras
w
£ = = C(Critical Path Deadline: 37.3 ms
o 300 A
=
'_
5 200 -
Worst 5
& 100 4
Case» 3
[=] .
= 0- -

0 16 32 64 128 0 16 32 B4 128
= Average Reaction Time with Physical Cameras Average Reaction Time with Virtual Cameras
£
"il-‘ 4
E 100
=
.E 75 A
g

A o 504
verage —¢&
g 25-
Had
0 16 32 64 1238 0 16 32 64 128
Mumber of noise threads Number of noise threads

Kernel / Sched Policies
B generic { CF5+CF5 BB generic/ DL+CFS B lowlatency f CF5+CF5 ™ lowlatency / DL+CF5 B realtime /CF5+CFS BB realtime [DL+CFS
B generic { RR4+RR generic /| DL+RR e |owlatency / RR+RR pw lowlatency / DL+RR B realtime / RR+RR realtime / DL+RR

Look at the influence of kernels...

Average Reaction Time with Physical Cameras

- = (Critical Path Deadline: 37.3 ms

100 -
generic / DL+RR

75 4 B lowlatency / DL+RR
realtime / DL+RR

% .

128

Average Reaction Time (ms)

Number of noise threads

Kernel / Sched Policies
B generic [CFS+CFS B generic / DL4+CFS B lowlatency / CFS+CFS e lowlatency / DL+CFS Bl realtime / CFS+CFS BN realtime/ DL+CFS
[generic / RR+RR generic / DL+RR B lowlatency / RR+RR m lowlatency / DL+RR B realtime / RR+RR realtime / DL+RR

Real-time kernel with PREEMPT _RT can
Improve average reaction time

Histogram of Reaction Time Violin Plot of Reaction Time by Kernel
400 : i Average Flleaction Time
I - =~ generic: 18.03 ms
: : —— - lowlatency: 17.88 ms = 60-
: ! — = realtime: 14.57 ms =
3001 il 1 : Reference Lines —
I : critical path deadline: L
r= I . = 373 ms £
3 200- : e
© i S
| +
1 o
: :
100 E a _ }_
- 19%
0_ 1 . I e s : . : ‘ . .
10 20 30 40 50 60 70 generic lowlatency realtime
Reaction Time (ms) kernel

Physical cameras, DL+RR policy, 128 noise threads.

Conclusion

« SCHED DEADLINE reduce up to 80% average reaction time

» Realtime kernel reduce up to 19% average reaction time

* Subthreads use SCHED RR

* Deadline misses exist, due to unpredictable GPU usage, e.g. 38ms latency -

Questions for future work

* |s it possible to bound latencies in GPU usage?

Propagate scheduling policies to subthreads?

Extract timing parameters automatically? [LiME, RTAS’25], [Timerlat, TC’25]
Newer kernel features such as EEVDF scheduling might help?

Embedded platforms? e.g. NVIDIA Jetson Orin

SAFEBOT n."ec m @

SentryRT-1: A Case Study in Evaluating Real-Time
Linux for Safety-Critical Robotic Perception

Yuwen Shen, Jorrit Vander Mynsbrugge, Nima Roshandel, Robin Bouchez, Hamed FirouziPouyaei,
Constantin Scholz, Hoang-Long Cao, Bram Vanderborght, Wouter Joosen, Antonio Paolillo

OVERVIEW SETUP

* Robols need to move at high speed while remaining safe + The physical setup includes a UR10e robot, a ring of five

for collaboration with humans. RGB-D cameras, and a light module.

+ Real-time performance: reaction time must be minimized + The system allows virtual input from dataset and robot
+ Linux configurations simulation with URSim.

— Scheduling policies: SCHED_DEADLINE, A. Physical setup

- Kernels: PREEMPT_RT

SOFTWARE FRAMEWORK

+ Pure C++ and CUDA program without ROS

TASK MODEL

Periodic tasks Sym. T D
Perception task (cam i) T, 33.3ms 33.3ms

S8M fask Taatn 2ms 2ms

Visualisation task (cam i) Nt critical :
ot eritical o o
RESULTS

Arm control task

CONFIGURATION + Real-time configurations outperform default Linux {CFS)

Combine different scheduling policies and Linux kernels by up to 80% in worst-case and 85% in average reaction

time.
SERRGPNT | |y Molesinond Gamas] * SCHED_DEADLINE improves reacton times signiicanty.
- kernel X T X hysca| - PREEMPT_RT further reduces reaction imes.
BR+FR X["generic ;g 'fD‘l"’E:* + DL+RR remains stable under high CPU interierence.
[EJLLZL;E aafirs & [dval;:;‘, + GPU inference is bu?ﬂeneckfur worst-case |atency.
128 + Subthread scheduling via SCHED_RR boosts consis-
X 3repeats, 30 sec for each run tency.
Warst Reaction Time with Physical Cameras Wichin Plat of Reaction Time by Kemnel

—= Crtical Pach Daadline: 372 ms ! has s i Term,

Whorst Reaction Trne ()

Awerage Rasction Tme imal

Let’'s build the safest,
smartest cobots
together!

Picture source

nttps://ifr.org/industrial-robots

nttps://www.automate.org/robotics/blogs/what-are-the-4-types-of-
laborative-robots

nttps://www.universal-robots.com/products/urlQe/
nttps://victorzhou.com/series/neural-networks-from-scratch/
nttps://www.pngegg.com/en/png-eekwz
nttps://www.intelrealsense.com/depth-camera-d435/

] https://www.mediamarkt.be/fr/product/ extremegamer-pc-gamer-
assic-level-3-amd-ryzen-7-5700x-2106882.html

] https://www.shutterstock.com/image-vector/ethernet-lan-wan-patch-
0le-rj45-2480667835

N U s WON

ek

Q) 00

