
SentryRT-1: A Case Study in
Evaluating Real-Time Linux for

Safety-Critical Robotic
Perception

Yuwen Shen∗†‡, Jorrit Vander Mynsbrugge∗‡, Nima Roshandel∗†‡, Robin Bouchez∗‡, Hamed FirouziPouyaei∗‡,
Constantin Scholz∗‡, Hoang-Long Cao∗§, Bram Vanderborght∗‡, Wouter Joosen†, Antonio Paolillo∗

∗Vrije Universiteit Brussel, Belgium, †KU Leuven, Belgium
‡imec, Belgium, §Can Tho University, Vietnam

Industry robot → cobot

[1]

→
[2]

Performance Safety

Cobot → safe perception

[3]

→

Safety by contact Safety by perception

Motivation
Robot: Safety & Performance

Real-time constraints
 Reaction time

Linux configurations
• Scheduling policies: SCHED_DEADLINE
• Kernels: PREEMPT_RT

SentryRT-1 Computer RobotSensor

Reaction time

Hardware view

Intel i9-14900KF (32 CPUs)
NVIDIA GeForce RTX 4060 Ti

Computer RobotSensor

[6]

[7]

[8]

Setup: physical
UR10e Robot, sensing ring, light module
5 cameras as input
Physical

Human detection
GPU accelerated NN

Speed and Separation Monitoring (SSM)
Human close to robot

→ robot speed adjustment

Visualization
images of each camera

Setup: virtual
UR10e Robot / URSim
5 cameras as input
Physical / Virtual

Human detection
GPU accelerated NN

Speed and Separation Monitoring (SSM)
Human close to robot

→ robot speed adjustment

Visualization
images of each camera

Concern about neural network?
Preliminary version

→ does have miss detection

WIP: Deterministic version
→ watchdog of NN
→ working on a certifiable software

SentryRT-1: focus on the timing

[4]

[5]

Software framework: perception
Camera 1
(30 fps)

Human
detection

Image Detections

GPU engine

Neural network

Image
camera 1

Image
camera 2

Image
camera 3

Segmentation
of human

for camera 1
FIFO queue

Detections

Perception thread

Software framework: buffer

Camera 1
(30 fps)

Human
detection

Image Detections
Double buffer

Detections
(backbuffer)

Detections
(frontbuffer)

Detections

x5

Software framework: SSM

Perception thread
camera 1 Buffer: detections

camera 1Perception thread
camera 2 Buffer: detections

camera 2
Perception thread

camera 3 Buffer: detections
camera 3

Perception thread
camera 4 Buffer: detections

camera 4
Perception thread

camera 5 Buffer: detections
camera 5

SSM thread

Min distance
of humans

Adjust speed
of robot

Decide
speed state

Critical path

Software framework

Task model

Perception task
(cam i)

���

SSM task
����

Tasks in critical path: Reaction time

Visualisation task
(cam i)

���

Arm control task
����

Other tasks:
33.3ms 4ms

SCHED_DEADLINE

...

Parameters!

Perception thread
camera i SSM thread

Perception task
(cam i)

SSM task

Subthread scheduling
•Perception task (cam i)

 ���
•Intel RealSense
•TensorRT
•OpenGL

•SSM task
����

•UR RTDE

Problem:
 Assigning a real-time policy
to a main thread does not
propagate to its subthreads.
Workaround:
→ Automatically apply
SCHED_RR with fixed priority
to subthreads.

Subthread scheduling

Abbr. Main threads Subthreads

CFS+CFS SCHED_OTHER SCHED_OTHER

RR+RR SCHED_RR SCHED_RR

DL+CFS SCHED_DEADLINE SCHED_OTHER

DL+RR SCHED_DEADLINE SCHED_RR

•Perception task (cam i)
 ���

•Intel RealSense
•TensorRT
•OpenGL

•SSM task
����

•UR RTDE

Configurations

Linux kernel

generic
lowlatency

realtime

Noise thread
count

0
16
32
64

128

Camera

physical
(D435i)
virtual

(dataset)

3 repeats, 30 sec for each run

Scheduling policy

main+subthreads

CFS+CFS
RR+RR
DL+CFS

DL+RR

X X X

X

Default CFS setting degrades

Real-time scheduling policies keep stable

Other combinations are similar

Worst-case reaction time is more variable

67.3ms reaction time
 37.6ms GPU

80%

Physical Camera ↓ Virtual Camera ↓

Worst
Case →

Average →

Virtual camera results are similar

Look at the influence of kernels...

Real-time kernel with PREEMPT_RT can
improve average reaction time

Physical cameras, DL+RR policy, 128 noise threads.

19%

Conclusion
• SCHED_DEADLINE reduce up to 80% average reaction time +++
• Realtime kernel reduce up to 19% average reaction time +
• Subthreads use SCHED_RR o
• Deadline misses exist, due to unpredictable GPU usage, e.g. 38ms latency -

Questions for future work
• Is it possible to bound latencies in GPU usage?
• Propagate scheduling policies to subthreads?
• Extract timing parameters automatically? [LiME, RTAS’25], [Timerlat, TC’25]
• Newer kernel features such as EEVDF scheduling might help?
• Embedded platforms? e.g. NVIDIA Jetson Orin

Let’s build the safest,
smartest cobots
together!

Picture source
[1] https://ifr.org/industrial-robots
[2] https://www.automate.org/robotics/blogs/what-are-the-4-types-of-collaborative-robots
[3] https://www.universal-robots.com/products/ur10e/
[4] https://victorzhou.com/series/neural-networks-from-scratch/
[5] https://www.pngegg.com/en/png-eekwz
[6] https://www.intelrealsense.com/depth-camera-d435/
[7] https://www.mediamarkt.be/fr/product/_extremegamer-pc-gamer-classic-level-3-amd-ryzen-7-5700x-2106882.html
[8] https://www.shutterstock.com/image-vector/ethernet-lan-wan-patch-cable-rj45-2480667835

