# SentryRT-1: A Case Study in Evaluating Real-Time Linux for Safety-Critical Robotic Perception

Yuwen Shen\*†‡, Jorrit Vander Mynsbrugge\*‡, Nima Roshandel\*†‡, Robin Bouchez\*‡, Hamed FirouziPouyaei\*‡,

Constantin Scholz\*‡, Hoang-Long Cao\*§, Bram Vanderborght\*‡, Wouter Joosen†, Antonio Paolillo\*

\*Vrije Universiteit Brussel, Belgium, †KU Leuven, Belgium

‡imec, Belgium, §Can Tho University, Vietnam













## Industry robot → cobot



Performance

Safety

## Cobot → safe perception



Safety by contact

Safety by perception

#### Motivation

**Robot**: Safety & Performance

**Real-time** constraints

Reaction time

#### **Linux configurations**

• Scheduling policies: SCHED\_DEADLINE

• Kernels: PREEMPT\_RT







#### Hardware view



Intel i9-14900KF (32 CPUs) NVIDIA GeForce RTX 4060 Ti



## Setup: physical

UR10e Robot, sensing ring, light module

**5 cameras** as input Physical

#### **Human detection**

**GPU** accelerated NN

Speed and Separation Monitoring (SSM)
Human close to robot

→ robot speed adjustment

Visualization images of each camera



## Setup: virtual

UR10e Robot / URSim

**5 cameras** as input Physical / **Virtual** 

#### **Human detection**

**GPU** accelerated NN

Speed and Separation Monitoring (SSM)
Human close to robot

→ robot speed adjustment

Visualization images of each camera



#### Concern about neural network?

#### Preliminary version

→ does have miss detection

WIP: Deterministic version

- → watchdog of NN
- → working on a certifiable software

SentryRT-1: focus on the timing





## Software framework: perception



#### Software framework: buffer





#### Software framework: SSM



## Critical path

### Software framework



#### Task model

Tasks in critical path: Other tasks: Reaction time 4ms 33.3ms Visualisation thread camera 1 **Perception task** Visualisation task Perception job (cam i) (cam i) T=33.3ms  $\tau_{p_i}$  $T_{V_i}$ Arm control Wait in buffer thread Arm control task SSM task  $\tau_{arm}$ SSM job SSM job T=2ms  $\tau_{ssm}$ T=2ms

## SCHED\_DEADLINE

Perception task (cam i)

Perception thread camera i

**SSM** task

**SSM** thread

```
inline sched_attr set_sched_deadline(vint64_t runtime, vint64_t deadline, vint64_t period) {
   ...
}
```

Parameters!

## Subthread scheduling

#### Perception task (cam i)

 $\tau_{p_i}$ 

- Intel RealSense
- TensorRT
- OpenGL
- SSM task

 $\tau_{ssm}$ 

• UR RTDE

#### Problem:

Assigning a real-time policy to a main thread does **not propagate** to its subthreads.

#### Workaround:

→ Automatically apply SCHED\_RR with fixed priority to subthreads.

## Subthread scheduling

Perception task (cam i)

$$\tau_{p_i}$$

- Intel RealSense
- TensorRT
- OpenGL
- SSM task

 $T_{ssm}$ 

• UR RTDE

| Abbr.   | Main threads   | Subthreads  |
|---------|----------------|-------------|
| CFS+CFS | SCHED_OTHER    | SCHED_OTHER |
| RR+RR   | SCHED_RR       | SCHED_RR    |
| DL+CFS  | SCHED_DEADLINE | SCHED_OTHER |
| DL+RR   | SCHED_DEADLINE | SCHED_RR    |

## Configurations

| Scheduling policy |  |  |
|-------------------|--|--|
| main+subthreads   |  |  |
| CFS+CFS           |  |  |
| RR+RR             |  |  |
| DL+CFS            |  |  |
| DL+RR             |  |  |



| Noise thread count |  |
|--------------------|--|
| 0                  |  |
| 16                 |  |
| 32                 |  |
| 64                 |  |
| 128                |  |
|                    |  |





#### Default CFS setting degrades

#### Average Reaction Time with Physical Cameras



#### Real-time scheduling policies keep stable





#### Other combinations are similar



#### Worst-case reaction time is more variable



#### Virtual camera results are similar

Physical Camera ↓

#### **Virtual Camera** ↓



#### Look at the influence of kernels...



## Real-time kernel with PREEMPT\_RT can improve average reaction time



Physical cameras, DL+RR policy, 128 noise threads.

#### Conclusion

- SCHED DEADLINE reduce up to 80% average reaction time +++
- Realtime kernel reduce up to 19% average reaction time
- Subthreads use SCHED RR
- Deadline misses exist, due to unpredictable GPU usage, e.g. 38ms latency

#### **Questions for future work**

- Is it possible to bound latencies in GPU usage?
- Propagate scheduling policies to subthreads?
- Extract timing parameters automatically? [LiME, RTAS'25], [Timerlat, TC'25]
- Newer kernel features such as EEVDF scheduling might help?
- Embedded platforms? e.g. NVIDIA Jetson Orin





Let's build the safest, smartest cobots together!

#### Picture source

- [1] https://ifr.org/industrial-robots
- [2] https://www.automate.org/robotics/blogs/what-are-the-4-types-of-collaborative-robots
- [3] https://www.universal-robots.com/products/ur10e/
- [4] https://victorzhou.com/series/neural-networks-from-scratch/
- [5] https://www.pngegg.com/en/png-eekwz
- [6] https://www.intelrealsense.com/depth-camera-d435/
- [7] https://www.mediamarkt.be/fr/product/\_extremegamer-pc-gamer-classic-level-3-amd-ryzen-7-5700x-2106882.html
- [8] https://www.shutterstock.com/image-vector/ethernet-lan-wan-patch-cable-rj45-2480667835