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Abstract— Unsafe memory accesses are the cause of most
cybersecurity vulnerabilities. Robotic systems are not exempt
from these risks, especially in defense environments where
they are prime targets for cyber threats, and exploiting these
vulnerabilities can lead to significant physical consequences.

To limit the risks associated with memory-unsafe languages
in robotic systems, the FOundations for Reliable, CorrEct, and
Secure robotic systems (FORCES) project proposes the design
of two tools. First, a robust and incremental transpilation tool
that enables the conversion of legacy C/C++ code to Rust,
thereby enhancing memory safety without sacrificing perfor-
mance. Second, a comprehensive evaluation framework that
establishes metrics for correctness, security, performance, and
maintainability to assess the effectiveness of the transpilation
process. Both tools will be tested and validated across diverse
robotic use cases for the Belgian Defense.

I. INTRODUCTION

In early 2024, the White House Office of the National Cy-
ber Director issued a report highlighting the risks associated
with languages allowing direct memory manipulation such
as C and C++, and urging programmers to adopt memory-
safe languages for all new programs, while also applying
memory-safe practices to legacy codebases in an effort to
prevent vulnerabilities that have led to breaches like the 2014
Heartbleed bug and the 2023 BLASTPASS incident [1]. The
European Union, through the Cyber Resilience Act [2] and
the NIS2 Directive [3], also recognizes the importance of
improving cybersecurity in its member states, highlighting
the need for robust security measures in software develop-
ment and funding initiatives pushing for the adoption of
memory-safe programming practices [4]. In March 2024,
Google [5] revealed that nearly 70% of the high-criticality
vulnerabilities in Android and Chrome stem from memory
safety issues. Microsoft [6] has also shown that around 70%
of their CVEs are due to memory corruption in C/C++ code.
Both companies argue that adopting memory-safe languages
like Rust can proactively eliminate these vulnerabilities with
minimal performance loss, or even potential performance
gains. The US Department of Defense’s TRACTOR program
aims to automate the translation of C code into Rust in order
to prevent and eliminate memory security vulnerabilities in
C programs [7]. Collectively, these initiatives underline that
memory safety is not only a best practice but a matter of
safety and reliability for critical systems, whose failures can
generally lead to catastrophic consequences.
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Robotic systems—such as unmanned aerial, ground and
maritime vehicles—are increasingly deployed in high-stakes
environments, from surveillance and reconnaissance to dem-
ining and payload delivery. The unique complexity and
autonomy of these systems, combined with their exposure
to cyber threats, amplify the potential impact of security
vulnerabilities, especially in defense contexts. The tangible
risks and physical consequences associated with compro-
mised robotic systems underscore the urgency of adopting
memory-safe practices.

Contributions. We introduce FORCES, a toolchain and
methodology to support the incremental migration of legacy
C/C++ codebases to memory-safe Rust, with a focus on
robotics applications. FORCES aims to assist the translation
of legacy C/C++ cobebases into safe Rust by proposing a
novel transpiler (a source-to-source compiler) and a frame-
work for evaluating the transpiled programs through 4 high-
level metrics: correctness, performance, security and code
quality. The transpiler will perform an incremental, function-
by-function translation, and each function translation will be
evaluated on the basis of these 4 metrics to ensure that the
code is correctly translated before being integrated into the
resulting codebase.

II. RELATED WORK

A. Legacy Languages and Rust as Safer Alternative

Both academia and industry have documented that
C/C++’s manual memory manipulation leads to critical
vulnerabilities (e.g., buffer overflows, null-pointer derefer-
ences) [5], [8], [9], [10], motivating a shift towards safer
languages. Rust’s built-in ownership model and zero-cost
abstractions deliver memory safety, even for concurrent
code [11], [12], [13], without significantly compromising
performance [14], [15], [16], [17]. Its growing adoption
in security-sensitive systems [18], [19], its integration into
ROS [20], and Rust-translated Linux kernel modules [21],
[15], [22] underscore its suitability for defense robotics.

B. Automated Transpilation Efforts

Recent initiatives to automate the migration from C and
C++ to Rust showed the feasibility and benefits of transi-
tioning legacy codebases. However, existing solutions fall
short on certain points. For instance, Tripuramallu et al. [23]
showed that C2Rust [24]—a project funded by DARPA—
can only handle C code, converting it to unsafe Rust, and
that CRust [25] has limited class transpilation support and
cannot handle header files. In the same work, the authors also



proposed a first step to address these shortcomings: a manual
transpilation process that maps C/C++ constructs to Rust
counterparts to guide automated conversion. Other efforts
to improve and build upon these tools have been made:
Emre et al. [26] provide an empirical study of unsafety in
automatically translated Rust code and introduce techniques
leveraging Rust’s borrow checker to reduce raw pointer
usage; Ling et al. [27] present CRustS2, a fully automated
transformation system that refines C2Rust output by system-
atically reducing unsafe code in function signatures.

C. Evaluation Metrics for Transpiled Code

A critical aspect of adopting a new transpilation approach
is the ability to rigorously assess the resulting code across
the 4 metrics we identified. State-of-the-art methodologies
and tools exist for evaluating these various dimensions.

To assess correctness, property-based testing frameworks
exist like QuickCheck, Hypothesis, and other Rust-specific
tools like Kani, Loom, and Shuttle.

As for security, dynamic analysis techniques such as
fuzzing [28], instrumentation [29], and dynamic taint anal-
ysis [30] are precise but slow. In contrast, static analysis
techniques—namely, graph-based [31], distance-based [32],
and symbolic execution [33]—offer faster evaluations, al-
though they tend to be less precise. Consequently, these
techniques can be used either separately or in a hybrid
fashion to effectively identify bugs and vulnerabilities.

Benchmarking tools (e.g., benchkit [34] or Google Bench-
mark) that precisely measure code performance, along with
profiling tools (e.g., gprof or perf) that identify performance
bottlenecks, can pinpoint the parts of the code that most
affect system performance, thereby guiding iterative opti-
mization efforts.

Static analysis tools like Clang Static Analyzer and Clippy
help assess code quality. Moreover, platforms such as
SonarQube and CodeClimate provide more comprehensive
assessments of code maintainability, including cyclomatic
complexity, duplication, and technical debt.

III. CHALLENGES IDENTIFIED

Existing transpilation tools like C2Rust [24], CRust [25],
and Corrode [35] produce non-idiomatic, C-like code that
is difficult to maintain. We identified several challenges
during the analysis of these tools, including (i) the transpi-
lation of preprocessor directives (such as header inclusion,
macros, and conditional compilation), (ii) the translation of
object-oriented code (which can be aided by tools such as
(auto)cxx [36], [37]), (iii) concurrency management (which
is not standard in C), (iv) the translation of errors and excep-
tions into Rust’s Result<T> and panic!() mechanisms,
and (v) the generation of idiomatic Rust code that leverages
the standard library and functional programming features.

Another significant challenge is the current lack of evalu-
ation tools to verify that the transpilation has been executed
correctly. Such tools would allow for a thorough assessment
of the correctness, security, performance, and overall quality
of the produced source code. Additionally, they should
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Fig. 1. Impact of fine-grained migration on performance, security,
correctness, and code quality. The horizontal axis shows the percentage
of source code transpiled to Rust; the vertical axis shows metric scores.

support hybrid binaries, enabling the evaluation of code that
has been only partially transpiled.

IV. FORCES OBJECTIVES

A. Automated Fine-Grained Code Transpilation from C/C++
to Rust

The main objective of the project is to develop an auto-
mated system to convert C/C++ code to memory-safe Rust.
This transpilation tool will operate at a function-by-function
level, offering granular control to allow end users to transpile
only part of their application (e.g., the safety-critical part) or
the whole codebase (see Figure 1). The transpiler aims to
convert as much of the legacy codebase as possible while
reducing potential memory-related vulnerabilities without
affecting too much the performance of the original code. The
validation of the transpiler will focus on robotics software
patterns (e.g., ROS nodes, kernel device drivers, etc.) and will
provide guidance through manual transpilation for sections
that cannot be automatically transpiled.

To achieve this, the transpiler draws substantial inspira-
tion from established compiler architectures and comprises
three principal components: a frontend, middleware, and a
backend. Unlike traditional compilers, this transpiler operates
on a source-to-source basis. Consequently, the middleware’s
intermediate representation (IR) is an abstract syntax tree
(AST) as opposed to a lower-level assembly-like language
such as LLVM IR. This intermediate AST takes inspiration
from the Rust AST, since Rust is the intended target for the
backend. However, the AST is designed to be sufficiently
distinct from Rust to allow for a smooth conversion process
between the two languages.

Within each of the three stages, the transpiler performs
a series of incremental passes. Each pass serves to refine
or alter aspects of the IR. Some passes are essential for
achieving accurate transpilation while others are optional,
with the aim of enhancing the readability or maintainability
of the code. Furthermore, these incremental passes simplify
the design and debugging of the transpilation process by iso-



fn greet() {
    println!("Hello, world!");
}

fn farewell() {
    println!("Goodbye!");
}

fn multiply(x: i32, y: i32) -> i32 {
    x * y
}

struct Calculator;

impl Calculator {
  fn subtract(a: i32, b: i32) -> i32 {
    a - b
  }

  fn average(a: i32, b: i32) -> f64 {
    (a as f64 + b as f64) / 2.0
  }
}

#include <stdio.h>

void greet() {
    printf("Hello, world!\n");
}

int multiply(int x, int y) {
    return x * y;
}

double divide(double x, double y) {
    if (y != 0) {
        return x / y;
    } else {
        return 0.0;
    }
}

void display_number(int number) {
    printf("Number: %d\n", number);
}
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Fig. 2. Illustration of the transpilation, compilation and linking process.
C/C++ source is partially transpiled to Rust; both the untouched C/C++ and
the generated Rust code are then compiled and linked into a single binary

lating concerns. This mechanism also permits the activation
or deactivation of specific features by choosing whether to
execute a particular pass.

Figure 2 illustrates the process of the function-by-function
transpilation workflow. For each C/C++ compilation unit,
an initially empty corresponding Rust compilation unit is
created. The tool then selects a function from the C/C++
unit, transpiles it into the Rust unit, and the resulting set
of compilation units is compiled and linked to produce a
new binary program. This binary is subsequently evaluated
against the established metrics, generating a new evaluation
point on the x-axis of Figure 1. This iterative process
enables the progressive improvement of code safety and
performance. Various heuristics for function selection—such
as prioritizing functions based on their size or execution time
footprint in test cases—are explored to identify those that
most significantly affect overall system security, safety and
efficiency.

B. Metrics and Evaluation Methodologies

Despite the availability of multiple tools to measure se-
curity, correctness, performance, and quality of the code,
an integrated approach that combines the assessments of
all four metrics in the context of defense cyber-physical
systems is missing. The FORCES project aims to fill this gap
by developing a comprehensive evaluation framework that
systematically captures these key performance indicators.

Furthermore, those metrics allow us to precisely quantify
the impact of our transpilation tool and find weak spots that
require further processing. Since some amount of unsafe
Rust is unavoidable for low-level software, it is essential
to demonstrate that this unsafety is reduced—or at the very
least, not greater—than that present in the original C/C++
code. Moreover, as C/C++ continues to dominate in critical
systems, ensuring seamless interoperability with Rust is
crucial. Therefore, in the context of our incremental and

hybrid transpilation approach, we must also assess the impact
of using the foreign function interface on Rust’s overall
security guarantees.

C. Defense use cases

The third objective of FORCES focuses on defining and
validating real-world defense robotics applications as test
cases across a diverse range of defense use cases derived
from both past and ongoing initiatives at the Royal Military
Academy of Belgium, covering air, ground, and maritime
robotics. Controlled robotic testbeds will be used to replicate
experimental environments, thereby facilitating the applica-
tion of the transpilation methodology and evaluation metrics
developed in earlier phases.

One concrete use case involves Universal Robots arms that
are used in demining projects. We discovered that the API for
these cobots (ur_rtde v1.6.0) presents one buffer-overflow
vulnerability that causes shaky joint motions, a significant
risk when handling explosives. Transpiling this codebase
would eliminate such vulnerabilities, making the use of the
arm safer.

Over the four-year project, the scope of these use cases
will be progressively expanded to align with evolving de-
fense requirements, incorporate operational feedback, and
encompass increasingly complex applications that demand
a more mature transpiler. A dedicated field test showcasing
a transpiled codebase will be organized to demonstrate and
validate the effectiveness of the transpilation process.

V. PROJECT TIMELINE AND MILESTONES

The FORCES project, which officially started in De-
cember 2024, is structured around multiple milestones as
illustrated in Figure 3. Future publications will document
project progress, providing concrete transpilation examples
and quantitative benchmarks.

Phase 1 Phase 2 Phase 3
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Fig. 3. FORCES project timeline highlighting major milestones divided
into three phases. Phase 1 (Foundational Research, 2025–2026) focuses
on developing the transpilation methodology, defining evaluation metrics,
and selecting relevant defense use cases. Phase 2 (Prototype Development,
2026–2027) aims to build and integrate a TRL 4 transpiler prototype into
robotic testbeds while refining the evaluation pipeline. Phase 3 (Operational
Enhancement, 2027–2029) involves iterative tool improvement to achieve
TRL 5, culminating in comprehensive field trials and the final release of
the complete toolchain.

VI. CONCLUSIONS

FORCES presents an approach for enhancing the security
of legacy C/C++ code through an incremental transpilation



to Rust. By performing a fine-grained, function-by-function
transpilation using a comprehensive evaluation framework,
the FORCES project aims to improve memory security and to
contribute to the foundations of the next generation of robotic
systems, built on memory-safe, reliable software, thereby
enhancing their resilience against cyber threats.
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