
FORCES

Théo Engels (RMA) Robbe de Greef (VUB) Esteban Aguililla Klein (ULB)Attilio Discepoli (VUB)
Remi Gunsett (Thales)Francesco D’Agostino (Thales) Jonathan Pisane (Thales)

Antonio Paolillo (VUB)Ken Hasselmann (RMA)

Funded by DEFRA research programme 2024

FOundations for Reliable, CorrEct and Secure robotic systems

THE PROBLEM THE SOLUTION
Modern robotics still relies on legacy C/C++ code, which
allows unsafe memory access. This leads to critical issues
like buffer overflows and null pointer dereferences—
responsible for high-profile incidents such as Heartbleed
and BLASTPASS. In fact, nearly 70% of critical software
vulnerabilities stem from memory safety flaws. [1] [2]

The FORCES project addresses these vulnerabilities by
introducing an incremental transpilation tool that
converts legacy C/C++ code into memory-safe Rust.
Operating at a fine-grained, function-by-function level,
the tool enables a gradual migration—ensuring
that critical parts of the code are transformed first
while preserving overall system performance.

AST

Rust like
IR

Object
file

Object
file

Hybrid program
binary image

THE METHODOLOGY

Program binary image
from part C/C++ and
part Rust source code

Evaluation FrameworkGranular Transpiler

References
«We need a safer systems programming language | MSRC Blog |
Microsoft Security Response Center» https://msrc.microsoft.
com/blog/2019/07/we-need-a-safer-systems-programming-
language/.
«Secure by Design: Google’s Perspective on Memory Safety»
https://research.google/pubs/secure-by-design-googles-
perspective-on-memory-safety/.

[1]

[2]

By leveraging Rust's inherent memory safety, FORCES
helps eliminate common issues such as buffer overflows
and null pointer dereferences. In addition, the project
introduces a comprehensive evaluation framework that
establishes metrics for correctness, security,
performance and maintainability to assess the
effectiveness of the transpilation process. This integrated
approach not only fortifies systems against memory
vulnerabilities but also paves the way for a smooth
modernization of legacy codebases

The code is transpiled granularly - function by function -
using the foreign function interface (FFI) feature of Rust to
gradually integrate the new functions into the
resulting codebase so as to gradually translate the entire
codebase

Benchmarking and profiling tools help compare
the efficiency of the transpiled code against the
original C/ C++ implementation.

Automated testing frameworks and robotic testbeds
validate that the transpiled code behaves as intended.

Static and dynamic analysis tools are employed to
assess the elimination of memory-related vulnerabilities.

Metrics such as code complexity and clarity are
tracked to ensure that the refactored code is
manageable and easy to extend.

30 %

70 % Memory
safety flaws

Others

