
Research topics:
 • Architecture
 • Parallelism
 • Physical contraints
 • Timing analysis
 • Mixed-criticality

Industry goals:
 • Certification
 • Norm compliance
 • Low latency
 • Critical hard real-time
 • Requirements satisfaction

State-of-the-art
 Algorithms Platform

Clusters

Tasks

Academic Industrial

High Performance Parallel Embedded

Real-time Operating Systems

Analysis & Choices

Build & Deploy

Experiment & Benchmark

Two Protocols to Reduce the Criticality Level of
Multiprocessor Mixed-Criticality Systems

François Santy
PARTS Research Center

Université Libre de Bruxelles (ULB)

francois.santy@ulb.ac.be

Gurulingesh Raravi
CISTER-ISEP Research Center
Polytechnic Institute of Porto

ghri@isep.ipp.pt

Geoffrey Nelissen
CISTER-ISEP Research Center

Polytechnic Institute of Porto

grrpn@cister.isep.pt

Vincent Nelis
CISTER-ISEP Research Center

Polytechnic Institute of Porto

nelis@isep.ipp.pt

Pratyush Kumar
Computer Engineering and Networks

Laboratory, ETH Zurich

pratyush.kumar@tik.ee.ethz.ch

Joël Goossens
PARTS Research Center

Université Libre de Bruxelles (ULB)

joel.goossens@ulb.ac.be

Eduardo Tovar
CISTER-ISEP Research Center

Polytechnic Institute of Porto

emt@dei.isep.ipp.pt

ABSTRACT
Most of the existing research on multiprocessor mixed-critica-
lity scheduling has focused on ensuring schedulability of the
task set when the criticality level of the system increases.
Furthermore, upon increasing the criticality level, most of
these scheduling approaches suspend the execution of the
lower criticality tasks in order to guarantee the schedula-
bility of the higher criticality tasks. Although there exists
a couple of approaches to facilitate the execution of some
of the lower criticality tasks using the available slack in the
system, to the best of our knowledge, there is no efficient
mechanism that allows for eventually decreasing the criti-
cality level of the system in order to resume the execution
of the suspended lower criticality tasks. We refer to the
problem of deciding when and how to lower the criticality
level of the system as the“Safe Criticality Reduction” (SCR)
problem. In this work, we design two solutions that are in-
dependent of the number of criticality levels and the number
of processors and prove their correctness. The first protocol
can be applied to any fixed task priority scheduler, and an
upper-bound on the suspension delay suffered by the lower
criticality tasks is presented. The second protocol can be ap-
plied to any fixed job priority scheduler and hence dominates
the first protocol albeit with a higher run-time overhead. To
the best of our knowledge, these are the first solutions for
the SCRproblem on multiprocessor platforms.

Keywords
Real-time scheduling, Identical Multiprocessor, Mixed-Cri-
ticality, Decrease Criticality.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. INTRODUCTION
Many industrial domains such as avionics, automotives,

smart manufacturing, etc. rely heavily on the use of real-
time embedded systems. Typically, such systems are subject
to stringent timing requirements. These systems are typi-
cally composed of a set of very specific functionalities, hence-
forth called tasks. In order to guarantee that these systems
always react within some pre-determined time-bounds, each
task must be thoroughly analyzed for their temporal be-
haviour. In particular, one must determine their worst-case
execution times (WCETs) and many tools and approaches
exist to perform this estimation. The rigorousness of these
tools depends on the desired level of confidence that the ac-
tual execution time of a task will not exceed its estimated
WCET. For example, the WCET of a task can be computed
empirically by using measurement tools and run-time traces,
in which case the WCET estimation is the maximum exe-
cution time observed during the simulation. Alternatively,
the WCET can be estimated by using more conservative but
safer approaches based on parsing and analyzing the source
code. Typically, WCETs determined by simulation are op-
timistic and thus less reliable than the WCETs estimated
by statically analyzing the source code. However, the lat-
ter approach usually overly estimates the actual execution
requirements of the tasks. The method to be employed to
estimate the WCET of a task thus depends on the conse-
quences of the analyzed task missing its deadlines. There-
fore, each task is subject to a “risk analysis” that will decide
on its criticality level1. Consequently:

• The WCET of higher criticality tasks are determined
by using conservative approaches which provide safe
but overly pessimistic estimates since the timeliness of
these tasks is crucial for the system;

• The WCET of lower criticality tasks are determined
by using less conservative approaches since these tasks
tolerate occasional deadline misses.

1In industrial standards, the criticality of a task is some-
times referred to as its safety integrity level (SIL), or Design
Assurance Level (DAL).

System

Execution

Applications

</> </> </> </>

</> </> </> </>

</> </> </> </>

</> </> </> </>

</> </>

</> </>

</> </>

</> </>

</> </>

</> </>

Components

</> </>

</> </>

