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Abstract—This paper presents the practical implementation
of a multi-core mixed-criticality scheduling algorithm. The goal
of this work is to show the practical platform utilisation gain
by allowing the concurrent execution of applications having
different levels of criticality. We implemented the port of an
existing industrial application provided by Thales Research &
Technology on an embedded real-time operating system featuring
task execution budget control, multi-core scheduling and multiple
execution mode changes. We evaluated our solution by measuring
the time that remains available for a low-criticality application
running concurrently with the high-criticality use case mentioned
above.

Index Terms—Real-time, mixed-criticality, scheduling, Thales,
system, RTOS, HIPPEROS.

I. INTRODUCTION

Since the seminal paper by Vestal in 2007 [1], a large num-
ber of scientific papers related to mixed-criticality scheduling
techniques have been published [2]–[4]. However, few of
these techniques have been implemented or tried on practical
problems [5]. At the same time, the idea of mixed-criticality in
industrial applications is not new. Even the Apollo Guidance
Computer developed in 1966 and embedded in the Saturn V
rocket had a primitive form of criticality management which
took effect during the moon landing stage [6].

In tightly certified industries, isolating software components
of varying criticality results in important economical gains and
shorter time to market. Indeed, software development at high
levels of certification is extremely costly. In current systems,
some tasks are certified at a higher degree of safety than what
is strictly necessary due to sharing hardware with more critical
tasks. Mixed-criticality techniques may contribute to partially
solve this problem by ensuring strong temporal isolation
between tasks even when running on the same hardware.

The IMICRASAR [7] project targeted the creation of
a version of the HIPPEROS Real-Time Operating System
(RTOS) [8] under two main requirements. First, porting the
OS to a PowerPC multi-core platform brought by Thales
Research & Technology. Second, to operate with a multi-mode
isolated mixed-criticality scheduling policy in order to provide
predictable hard real-time guarantees.

The scope of the project included those two items, as well
as experiments validating the proposed software solution with

the Thales industrial use case. In this paper, we present the
system architecture providing isolation between the different
criticality applications and the experiments validating our
solution.

Our contributions in this paper are as follows. We show
there is evidence that OS-level mixed-criticality scheduling
allows using computing platforms more efficiently not only in
theory but also in real industrial scenarios. Our results show
that significant shares of the computing power of the platform
are made available to non-critical tasks while conserving the
safety guarantees offered to high criticality tasks.

II. THE HIPPEROS RTOS

The HIPPEROS multi-core kernel architecture follows a
master-slave asymmetric model [8]. User tasks are executed on
slave cores and potentially on the master core. As opposed to
symmetric kernel designs, the master core has exclusive access
to some of the critical pieces of the kernel data structures.

In particular, the master core is the central authority in
terms of scheduling. Whenever an event related to schedul-
ing happens (such as a job release of a periodic task),
the master core will update its scheduling model and send
context switch requests to the slave cores accordingly and
independently from one-another. This design has its pros and
cons, one clear advantage is that it greatly limits contention
on locks by avoiding direct data dependencies between slave
cores [8]. By concentrating most of the scheduling-related
interrupt handling on the master core, this design also keeps
scheduling overheads on slave cores to a minimum. Finally,
as the scheduling data must not be shared across cores of
the platform, it can be contained in the master core cache,
allowing faster scheduling operations and minimising the OS
impact on applications. The master core has the necessary
structures to handle asynchronous system calls without direct
mutual exclusion between slave cores.

HIPPEROS is based on a micro-kernel design. This means
that only the most basic system operations run in kernel mode
(scheduler, memory paging, etc.) while most of the drivers
and high-level system operations (file system, logging, etc.)
are pushed in RTOS services running in user mode next to
the application tasks. To allow applications to communicate



with these service tasks, the kernel exposes a multi-core Inter-
Process Communication (IPC) API based on both message
passing and shared memory. For example, in the application
use case presented in this paper, the user tasks use the
logging service in order to send display information to an
external application. Therefore, multi-core IPC mechanisms
are extensively used in the execution of the experiments of
this paper. The logging service uses a UART driver to use the
serial device of the platform.

HIPPEROS allows the execution of real-time tasks with
time budget allocation and deadline control. The specific time-
related RTOS mechanisms used in this work are described in
Sections IV and V.

III. THE THALES USE CASE

This research is largely based on an industrial use case
provided by Thales Research & Technology [9]. The use case
was an application written in C++ and structured into multiple
recurrent communicating tasks. The use case itself was largely
comprised of tasks that would be certified at one assurance
level. However, the aim of this research was in part to show
that given an existing industrial application, applying mixed-
criticality techniques could lead to additional features at little
cost.

The task set consisted in essentially two types of tasks. First,
many sensor-like applications retrieving exterior information
about the system it is supposed to be embedded in. Second,
a few heavier tasks doing database operations and distance
calculations. As can be seen in Section VI on experiments,
the tasks that handled distance calculations made heavy use
of the Floating Point Unit (FPU) of the platform. The first
kind of tasks mainly fed the second kind with information,
sometimes through pipelines with multiple stages.

The coherency of communications between tasks was han-
dled by time-slicing which required support at the OS level
for HIPPEROS. We implemented time-slicing by offsetting the
periodic releases of the tasks.

IV. MIXED-CRITICALITY MODEL

This paper covers the design of the mixed-criticality solution
that was implemented in the HIPPEROS kernel within the
IMICRASAR project. These changes affected the existing OS
in specific, well-defined components. Namely, the scheduler,
the task description system, the system call layer and the
event handler. The implemented mechanisms are known in
the literature as elastic mixed-criticality scheduling [10]. In
relation to the state of the art, this section goes into the details
of how the multi-WCET and related techniques for mixed-
criticality scheduling were designed.

A. Task types

The system supports three types of tasks: highly critical
tasks (“HI tasks”), real-time tasks (“LO tasks”) and best effort
tasks. Best effort tasks are free to be released at any rate and to
consume an arbitrary amount of computation time. However,
they will be considered with the lowest priorities by the

scheduler and may therefore not get the resources needed to
perform their purpose within strict time bounds. LO tasks have
design-time defined periods (or inter-arrival times), deadlines
and worst-case execution times. The scheduler will preempt
best-effort tasks to execute real-time tasks to completion.
Knowing bounds on the worst-case execution times (“WCET”)
of the tasks allows the operating system to allocate a time
budget to each real-time task. Real-time tasks must be divided
into two sub-categories: compressible and incompressible.
Compressible LO tasks allow the OS to reduce their arrival
rate (increase the periods) within predefined limits, therefore
allowing some form of Quality of Service (QoS) adjustment.
Incompressible real-time tasks simply do not allow such period
changes. Finally, highly critical tasks have the characteristics
of incompressible real-time tasks but additionally provide an
intermediate execution time limit (“LO WCET”) between zero
and their WCET. The use of this intermediate execution time
limit is described in Section IV-B on mode switching.

Criticality and priority are different concepts. To guarantee
the deadlines of regular real-time tasks, some highly critical
tasks may have lower priority than some regular real-time
tasks. In this sense, priority is merely a tool to ensure that the
proper scheduling decisions are taken to meet all deadlines.
Criticality is a degree of assurance that temporal (and other)
constraints will be met for a given task. Tasks that have higher
criticality undergo stricter development and verification tech-
niques including more pessimistic WCET bound evaluation.

B. Mode switching

Two modes of operation are defined. Under normal circum-
stances, the system uses all resources as efficiently as possible.
Best effort tasks are allowed to run with no constraints (other
than their low priorities) and compressible real-time tasks are
released at the nominal rate. Whenever a highly critical task
overruns its LO WCET, the system enters a critical mode of
execution. In critical mode, best effort tasks are suspended
and compressible real-time tasks have longer periods. Some
compressible tasks may have application-defined maximum
delays between job releases such as a lower bound on the
update frequency of a sensor. To accommodate for such tasks,
the task may be allowed to run to completion when a switch
to critical mode occurs. This design achieves the double goal
of providing highly critical tasks with the assurance that they
will meet their deadlines even in the event of extremely long
execution times and allowing other tasks to use the otherwise
wasted resources when execution times are closer to the
average. In most cases, the LO WCET would be set such that
the production environment never switches to critical mode.
The mode switch is therefore present to ensure a recovery plan
in the rare case of the HI task overrunning its LO WCET.

From critical mode, the system goes back to normal mode
when there are no available jobs (i.e. at the first point in time
when the system is idle).

Note that any task overrunning its WCET will be instantly
killed by the kernel. This holds for single- or mixed-criticality
system execution.



C. Mixed-criticality scheduling algorithms

In the literature, mixed-criticality task systems are often
considered in tandem with variations on either fixed priority
scheduling or deadline-driven (EDF) scheduling [3]. Indeed,
the mode switch mechanism described above alone does not
guarantee anything, as it might already be too late to execute
a highly critical task to completion before its deadline when a
mode switch occurs. Mixed-criticality scheduling techniques
explicitly make reservations to be able to handle the worst
case scenario.

However, we did not implement these techniques in the
context of this work. Only the mode-switching system required
by such scheduling algorithms has been implemented, and it
is applied in our experiments with a simple partitioned static
priority scheduler. The HIPPEROS implementation of mode-
switching is scheduler-agnostic, which means it can be used
with any supported scheduler without special configuration.
The static priority scheduler gives the CPU to user processes
according to user-defined task priorities. We used priorities and
partitioning guaranteeing the correct behaviour of the Thales
use case (i.e. not Rate Monotonic or any other standard priority
attribution policy).

V. MIXED-CRITICALITY CONSIDERATIONS

Mixed-Criticality applications are primarily concerned with
the isolation of tasks. A vast number of hardware and software
components in a real-time system are shared between tasks and
can potentially lead to less critical tasks interfering with more
critical tasks. In a RTOS, ensuring mixed-criticality operation
means that the OS ensures as much temporal isolation between
tasks as possible across criticality levels. In other words, while
temporal isolation between any two tasks is already an impor-
tant feature of RTOS design, additional steps must be taken
to ensure that less critical tasks cannot cause more critical
tasks to fail. Of course, there may be interference caused
by hardware constraints or application behaviour that the OS
cannot eliminate or mitigate and that cannot be accurately
accounted for.

As such, the challenges resulting from the use of modern
general purpose platforms in the context of mixed-criticality
real-time systems must be faced using an array of techniques
ranging from application to hardware design, including RTOS
scheduling mechanisms. The design goal of the HIPPEROS
mixed-criticality subsystem is to gather a set of OS level
solutions aimed at temporal isolation and efficient use of
resources in mixed-criticality applications. However, the chal-
lenges posed by temporal isolation are much more difficult to
tackle at the software level and it is also usually difficult to
evaluate the impact of isolation techniques on a real platform.

Theoretical works have been produced on techniques aimed
at mitigating the impact of highly critical tasks upon platform
utilisation. The theory derives from the observation that the
strict static techniques used to evaluate the WCET of critical
tasks give results that are usually considerably higher than
their actual WCET bound. In particular, there is a difference
between the WCET evaluation methods used for critical tasks

and non-critical (but still real-time) tasks [1]. Additionally, the
real probability distribution of execution times of a complex
program on most modern embedded systems does naturally
tend to have a long tail of extremely high and extremely
unlikely execution times. This statistical tendency leads to
excessively pessimistic WCET upper bounds.

In practice, a real-time system can implement multiple
modes of execution and switch between them according to the
status of a critical task after some execution time threshold
has been met. Under normal circumstances, the system is
utilised efficiently, allowing low criticality tasks to use the
available computing power. In the event that a critical task
has not completed before a given execution time threshold, the
system enters another mode where low criticality tasks receive
less computing power. Naturally, such techniques only make
sense if critical and non-critical tasks are mixed on the same
core. Analysis techniques exist to keep the loss of computing
power of non-critical tasks to a minimum [11]. In the context
of the IMICRASAR project, we choose to implement this
multi-mode scheme in the HIPPEROS kernel. Another solution
would be to use virtualisation. An hypervisor would execute
two operating systems simultaneously, one for each criticality
level. Therefore, it would be the role of the hypervisor to
ensure the temporal isolation between the tasks of different
criticality levels. However, this solution has already been tested
thoroughly in the literature [12] and would suffer from heavier
system overheads than the multi-mode RTOS solution.

VI. EXPERIMENTS

A. Hardware platforms

The experiments have been executed on two different em-
bedded platforms: on a NXP T2080RDB and on a Boundary
Devices SABRE Lite.

The T2080RDB is a development board which is part of
the NXP QorIQ PowerPC64 family. The processor is made
of 4 dual-threaded cores. We only used one of the two
threads per core in the experiments. The processor supports the
partitioning of the L2 caches. Both the L1 and L2 caches were
activated for the experiments and the L2 cache was partitioned:
each core having its own set of exclusive cache ways. On this
processor, the Translation Look-aside Buffer entries must be
loaded by software through a TLB miss exception handler.
The application and the kernel are small enough so that all
the TLB entries can be loaded concurrently at initialisation.

The SABRE Lite is a development board which contains a
quad-core ARM Cortex-A9 processor. Only the L1 cache was
activated for the experiments. The MMU (Memory Manage-
ment Unit) was activated and the TLB entries are automatically
loaded by the core when needed.

B. Experimental design

We designed a set of experiments with the aim of evaluating
the trade-off between different choices of LO WCET in HI
tasks. Intuitively, it is expected that choosing high values
for the LO WCET of highly critical tasks (i.e., values close
to their actual high criticality WCET) will result in fewer
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Fig. 1. Maximum measured execution times of the main recurring tasks of
the Thales application on the SABRE Lite.

criticality mode switches and therefore more total execution
time available for low criticality tasks. It is also expected that
using such high values will result in shrinking schedulability
windows for low criticality tasks. In particular, setting the low
criticality execution time limit to the WCET of each high
criticality task turns the mixed-criticality system into a single-
criticality system (i.e., a system without any possible mode
switch). To ensure schedulability, low criticality tasks must be
tested while taking the low criticality execution time limit of
high criticality tasks into account.

In essence, the system designer is faced with a balancing act
that consists in finding LO WCETs that are simultaneously low
enough to really give more breathing room to low criticality
real-time tasks and high enough to avert using too many
criticality mode switches (or completely avoid them). An
excessive amount of mode switches, while irrelevant to high
criticality tasks, will defeat the point of putting more low
criticality workloads on the system.

In every graph below, the system with the Thales applica-
tion was run for the time of the mission critical application
(approximately 92 seconds). This length of time corresponds
to a standard demonstration run of the application and a
representative slice of what it is supposed to do. Available
CPU time is expressed in seconds over the whole run.

C. The task set

We ran the Thales use case application as a single criticality
task set without any interference to measure the execution
times of its tasks on both boards. The results for SABRE
Lite are on Figure 1 and the results for T2080RDB are on
Figure 2, taking the maximum observed job execution time
over 10 executions of the application for each data point. We
then used the complete measurements (negligible tasks have
been stripped out of the charts to make the figures legible) to
arbitrarily choose safe WCET bounds that would typically be
found using static WCET evaluation techniques. We set the

senc_c1 loc_c1 loc_c4 loc_c3 near_p1 traj_r1
Tasks

0

2

4

6

8

10

M
ax

im
um

 e
xe

cu
tio

n 
tim

e 
of

 jo
bs

 (m
s)

Maximum measured execution time of jobs per task
Mono-core
Multi-core

Fig. 2. Maximum measured execution times of the main recurring tasks of
the Thales application on the T2080RDB.

WCET of each task to approximately 4 times the time of the
longest measured job of this task, over 10 measurements. This
low amount of repetitions was sufficiently accurate considering
the stability of the results using simple sampling techniques.
Obviously, this choice of WCET influences our other results.

As can be noted from these figures, the SABRE Lite and
the T2080RDB have different execution time profiles. Not
only is the T2080RDB faster in general, there is also a
much greater difference between tasks that make extensive
use of the FPU (“near p1” and “traj r1” in the figures) and
tasks that don’t compared to the SABRE Lite. Running the
same application using one or all cores of the platform also
affected the execution times. Note that none of the tasks were
multi-threaded, they were simply partitioned on multiple cores
instead of one. Multi-core execution times were shorter than
mono-core execution times across the board, which suggests
that the caches of both platforms were better used in multi-
core, although that is merely our hypothesis. This is one of
many reasons why deriving WCET bounds is complicated and
prone to extreme pessimism.

D. Effect of the LO WCET

We ran the Thales use case application on the SABRE Lite
and the T2080RDB. We wanted to evaluate the impact of mode
switches on potential low criticality tasks to be added to the
set of high criticality tasks in the original application. So we
added low criticality dummy tasks (one per core) using the
CPU exclusively (i.e. not performing I/O of any kind). These
dummy tasks effectively act as coal mine canaries as they
are set to be suspended when a mode switch occurs. At the
end of the run, the CPU time of each job execution of every
task is collected. Obviously, all runs of the experiments were
checked to guarantee that none of the Thales use case tasks
missed a deadline (i.e., all the HI tasks). This ensures that the
HI tasks did not suffer from interference from the LO tasks in
the experiments. Notice that we only used incompressible LO
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Fig. 3. Evolution of the available low criticality CPU time and number of
mode switches over full runs of the Thales application when varying the LO
WCET of HI tasks. Experiment on the SABRE Lite board.
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Fig. 4. Per-core available CPU time for low criticality tasks on the SABRE
Lite. The value on core 2 is lower than others because the task that interacts
with the host computer is very demanding and is partitioned on core 2.

tasks for the experiments. Adding the total execution time of
all low criticality dummy tasks, we obtained the available CPU
time for low criticality tasks running alongside the Thales use
case. The results of the multi-core experiments on the SABRE
Lite board are shown in Figure 3, and in Figure 5 for the
T2080RDB.

As can be seen on both graphs, the use of pessimistic
WCET evaluation techniques leads to large potential gains
through mixed-criticality mode switching. Indeed, setting the
intermediate execution time limits of high criticality tasks
(LO WCET) to a relatively small fraction (around 30%)
of their WCET bounds generates no mode switches in our
experiments. This suggests that the probability of a mode
switch occurring with these values is very low. Because no
mode switches occur, low criticality tasks are never suspended
by the mixed-criticality mechanism, and are thus free to use the
platform up to capacity. This is visible following the evolution
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Fig. 5. Evolution of the available low criticality CPU time and number of
mode switches over full runs of the Thales application when varying the LO
WCET of HI tasks. Experiment on the T2080RDB.
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Fig. 6. Per-core available CPU time for low criticality tasks on the
T2080RDB. The value on core 2 is lower than others because the task that
interacts with the host computer is very demanding and is partitioned on core
2.

of the CPU time curve. Notice that as the dummy tasks fill the
remaining available time on the platform, these measurements
allowed us to derive that the Thales use case is taking less
than 10% utilisation on both platforms.

As the LO WCET is set to lower values, criticality mode
switches start to occur and the CPU time available for low
criticality tasks declines rapidly. As the pessimistic WCET
bounds are approximately 4 times the maximum observed
execution time (see Figures 1 and 2) and that the observed
execution times are very stable, it is not surprising that mode
switches start to occur only below 30%. The number of
mode switches changes very rapidly when LO WCET varies
between 30% and 15% on both boards, but stays roughly
stable outside of that range. This suggests that around 15%
and lower is the range of values at which almost all possible
mode changes occur systematically. Available low criticality



CPU time decreases as soon as the first mode changes happen,
however the decrease is much smoother. It is also worth noting
that low criticality CPU time never drops below around 120
seconds. This suggests that even when all high criticality tasks
overrun their LO WCET, there is still time in-between them
where CPU time can be used by low criticality tasks. This is
a sort of accidental time-slicing. At 0% LO WCET, low and
high criticality tasks never execute simultaneously.

Below 15%, CPU time continues to decrease while the
number of mode switches stays stable. This means that these
mode switches arrive earlier in the system execution and
therefore the system stays in critical mode for a longer time.

E. Per-core utilisation

We measured the CPU time available to LO tasks on each
core separately on both boards. The results are shown on
Figure 4 and Figure 6 for the SABRE Lite and the T2080RDB
respectively. As can be seen on the graphs, the Thales use case
application only uses a small fraction of the computing power
available on both boards. Only core 2 is used significantly, due
to the heavy task that handles communication with the host
computer being partitioned on core 2. This is due to the usage
of relatively slow device for the application to communicate
with the external world (the UART/serial port communication).
Note that this task is not part of the Thales use case, we added
it ourselves for the needs of our experiments.

VII. CONCLUSIONS

In this research, we ported an existing industrial use case
application from Thales Research & Technology to the HIP-
PEROS RTOS. We developed the mixed-criticality extension
to the existing HIPPEROS kernel adding support for the
elastic mixed-criticality model. We ported an industrial use
case on two different boards based on different architectures,
the SABRE Lite and the T2080RDB. We used the mixed-
criticality system of HIPPEROS and actual executions of the
Thales use case to show how much CPU time is available on
the platform for low criticality tasks.

Our data illustrates that the pessimistic WCET bound
evaluation techniques applied on highly critical tasks can be
mitigated efficiently. A significant load of low criticality tasks
can be added at little cost and no OS-level risk to the original
application. The OS does not guarantee that there is no cache
interference between low criticality and high criticality tasks,
but it does guarantee that low criticality tasks are suspended
when high criticality tasks execute for longer than their typical
duration, as chosen by the user.

Note that we only measured the total available low criticality
CPU time and number of criticality switches. Adding real-time
guarantees to low criticality tasks requires low LO WCETs
for high criticality tasks. Therefore, there is a true trade-off
between choosing high to minimise the risk of mode switches
and choosing low to maximise the time to be allocated to low
criticality tasks. We expect the optimal trade-off to be found
by setting the LO WCET to the smallest value such that no

mode switch occurs within acceptable probabilities (domain-
defined).

For future work, we consider the implementation of ac-
tual mixed-criticality scheduling algorithms (such as EDF-
VD [13]). It is the logical next step in the development of
the HIPPEROS mixed-criticality solution. On the experiment
side, we also consider implementing non-trivial low-criticality
applications (with memory accesses, file systems and other
I/O operations) that are both compressible and incompressible.
This would allow to observe the mixed-criticality system
behaviour in the presence of more shared hardware resources,
making the experiments more representative of typical indus-
trial applications.
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