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Joint work
HIPPEROS and Thales R&T
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Mixed-criticality?
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Safety
Efficiency



The IMICRASAR 
project

Isolated MIxed CRiticality 

Avionics System ARchitecture

Goals:

- create an isolated 

                mixed-criticality

                hard real-time platform

platform = OS + hardware

- support of an industrial application on 

the platform

- results: retrieve unused CPU resource
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In short, Thales brings 
us two components…

5
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and asks us to make a 
system out of it
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Possible solutions
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Design, improve, tweak...
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Presentation Agenda

A. (Short) Presentation of the Thales application

B. Description of the RTOS

C. Description of the platform(s)

D. Experiments
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A. The Application

20



The application use case

21



The application use case
- Provided by Thales as a case study

22



The application use case
- Provided by Thales as a case study

- “Autopilot”:

- Inputs: sensors (GPS signal), database

- Outputs: display, direction instructions

23



The application use case
- Provided by Thales as a case study

- “Autopilot”:

- Inputs: sensors (GPS signal), database

- Outputs: display, direction instructions

- 18 cooperating high criticality tasks with different periodicity attributes

24



The application use case
- Provided by Thales as a case study

- “Autopilot”:

- Inputs: sensors (GPS signal), database

- Outputs: display, direction instructions

- 18 cooperating high criticality tasks with different periodicity attributes

- Programming model: Acquisition - Execution - Restitution

25



The application use case
- Provided by Thales as a case study

- “Autopilot”:

- Inputs: sensors (GPS signal), database

- Outputs: display, direction instructions

- 18 cooperating high criticality tasks with different periodicity attributes

- Programming model: Acquisition - Execution - Restitution

- The sampled use case takes 90 seconds to run
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B. The Operating System
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Context: the HIPPEROS company builds HIPPEROS OSes
- Development of the kernel started in June 2013

- Spin-off company, from Université Libre de Bruxelles, created in January 2014

- Today: ~15 people among them 5 OS developers & researchers

- The goal is to ship certifiable OSes to safety-critical software industries
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Main architecture and design choices
- Hard real-time operating system

- Embedded targets: ARMv7, ARMv8, IA32, PowerPC 64

- A new micro-kernel written from scratch

- Built for user needs, i.e. small footprint and adapted policies

- Multi-core architecture based on an asymmetric kernel

- Real-time model for user applications

- MMU support and virtual address space

- Resource sharing & IPC protocols (mutexes, semaphores, message passing, etc.)

- Usual OS services (timers, etc.)

- The OS is highly configurable
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Real-time
- User processes have real-time requirements

- Determinism and bounded guarantees

- On time as opposed to fast

- Real-time scheduling policies

- Resource usage bounded and checked
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OS Modules

HARDWARE
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OS Modules
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OS Modules

USER

SPACE

KERNEL

SPACE

HARDWARE

Memory & 
resources Scheduler IPC

System 
calls Processes Interrupts

Process 1 Process 2 Driver 1

Process 3 Process 4 Driver 2

Process 5 Service 1 Service 2
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In practice: build an application and deploy it on target

Tasks

HIPPEROS 
binary

hipperosApp.bin

46



Task set defines real-time
behaviour and specification

- Timing parameters

- Periodicity

- Code

- Core affinities

- ...
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<task>
  <identifier>1</identifier>
  <name>task1</name>
  <stackSize>8192</stackSize>
  <recurrence>UNIQUE</recurrence>
  <entryPoint>task1_main</entryPoint>
  <coreAffinity>0 1</coreAffinity>
</task>
<task>
  <identifier>2</identifier>
  <name>task2</name>
  <stackSize>8192</stackSize>
  <recurrence>PERIODIC</recurrence>
  <timingInformation>
    <wcet>42000</wcet>
    <deadline>20000</deadline>
    <period>20000</period>
  </timingInformation>
  <flags>REALTIME</flags>
  <coreAffinity>0</coreAffinity>
</task>
<task>
  <identifier>3</identifier>
  <name>task3</name>
  <stackSize>8192</stackSize>
  <recurrence>SPORADIC</recurrence>
  <timingInformation>
    <offset>10000</offset>
    <wcet>57000</wcet>
    <deadline>120000</deadline>
    <period>120000</period>
  </timingInformation>
  <flags>REALTIME</flags>
  <coreAffinity>1</coreAffinity>
</task>



For more information
- Seminal paper:  OSPERT 15

- We can work together

→ HIPPEROS Academic Partner Program

→ academic@hipperos.com

- Use HIPPEROS for commercial application

→ contact us: info@hipperos.com 

- You will soon be able to play with it for free!

→ HIPPEROS community edition

→ Expected release date: mid 2018

- For any information, contact me: antonio.paolillo@hipperos.com 
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Mixed-criticality operating system?
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Mixed-criticality operating system?

Vestal model*
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* actually, the elastic task model



3 types of tasks
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3 types of tasks

Tasks

High RT 
tasks

Low RT 
tasks

Non RT 
tasks

Ci 
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LO

Ti 
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suspended
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Extend the task set with Mixed-Criticality
<task>
  <timingInformation>
    <offset>0</offset>
    <wcet>100000</wcet>
    <deadline>200000</deadline>
    <period>500000</period>
  </timingInformation>
</task>

60



Extend the task set with Mixed-Criticality
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Extend the task set with Mixed-Criticality
<task>
  <timingInformation>
    <offset>0</offset>
    <wcet>100000</wcet>
    <deadline>200000</deadline>
    <period>500000</period>
    <mcHigh>
      <wcetLow>25000</wcetLow>
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Extend the task set with Mixed-Criticality
<task>
  <timingInformation>
    <offset>0</offset>
    <wcet>100000</wcet>
    <deadline>200000</deadline>
    <period>500000</period>
    <mcLow>
        <periodHigh>1000000</periodHigh>
        <onModeSwitch>LET_FINISH</onModeSwitch>
    </mcLow>
  </timingInformation>
</task>

❬ Oi , Ci , Di , Ti
LO ❭

Ti
HI
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Mode switch event - a low WCET overrun

Low tasks job instance:

<onModeSwitch>
  LET_FINISH
</onModeSwitch>

OR

<onModeSwitch>
  KILL
</onModeSwitch>

Tasks:

<periodHigh>
  1000000
</periodHigh>

OR

<suspended/>

OR

<unaffected/>
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HI task LO WCET overrun?
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HI task LO WCET overrun?

Global mode switch
(all jobs of all cores)
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Switch back to LO mode?
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Switch back to LO mode?

First idle instant
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C. Evaluated platforms
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NXP T2080RDB
- QorIQ T2080 platform:

- 4 dual-threaded e6500 cores (1.8 GHz)

- PowerPC 64 bits architecture

- 4 GB RAM

- OS support for caches:

- L1

- Partitioning of L2 (≃ private)

- No L3

- TLB miss software handler
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BD SABRE Lite
- NXP i.MX 6Quad processor:

- 4 Cortex-A9 cores (800 MHz)

- ARMv7-A 32 bits architecture

- 1 GB RAM

- OS support for caches:

- Private L1 enabled

- No L2

- Not in IMICRASAR but “control board”
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D. Experiments
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What we evaluated
- Idea: how to set the LO wcet such that we balance safety and efficiency?

- Experiment execution time measurements → approximate HI WCET bounds

- HI WCET: 4x max observed execution time for each task

- Run the Thales HI application concurrently with a dummy LO application

- Add dummy LO tasks and measure contributions

- CPU bound, no I/O

- Suspended when a mode switch occurs

- No deadline miss for HI tasks (avoid HI/LO interferences)

- Limitations:

- partitioned fixed priority scheduling

- no specific MC scheduler is implemented (future work)
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Job execution time measurements

- Thales FMS application: 18 tasks

- 12 tasks have negligible execution time and/or are not periodic

- We plot the maximum observed execution time of all the jobs of each task

- Repeated 10 times, very stable measurements (small stdev)
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Job execution time measurements (max observed)
T2080RDB SABRE Lite
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Observation

Use case uses less than 10% 
of the platform CPU
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Summary: evaluation scheme
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How to set WCET LO?
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Evolution of available LO CPU time and # mode switches
SABRE Lite

T2080RDB
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T2080RDB SABRE Lite

Evolution of available LO CPU time, per core

94



Conclusions
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Conclusions
- About the porting : no line of the original core application were modified

- Industrial use case takes less than 10% on the considered platform

- We can use the remaining 90% for LO app without compromising HI app

- Straightforward MC mode switch support at OS level

- Future work involves:

- Fine grained control over interferences

- Implementation of MC scheduling algorithms

- Evaluations: non trivial LO app (memory, file systems, I/O) with compressible/incompressible

- Typical industrial use  cases 96
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