
Porting a safety-critical industrial application on a
mixed-criticality enabled real-time operating system

Antonio Paolillo

Paul Rodriguez, Vladimir Svoboda, Olivier Desenfans, Joël Goossens, Ben Rodriguez, Sylvain Girbal, Madeleine Faugère, Philippe Bonnot

5th December 2017

5th International Workshop on Mixed Criticality Systems (WMC 2017)

Joint work
HIPPEROS and Thales R&T

2

Mixed-criticality?

3

Safety
Efficiency

The IMICRASAR
project

Isolated MIxed CRiticality

Avionics System ARchitecture

Goals:

- create an isolated

 mixed-criticality

 hard real-time platform

platform = OS + hardware

- support of an industrial application on

the platform

- results: retrieve unused CPU resource

4

In short, Thales brings
us two components…

5

In short, Thales brings
us two components…

and asks us to make a
system out of it

6

Possible solutions

FMS
software

PPC64
platform

7

Possible solutions

FMS
software

PPC64
platform

HIPPEROS
RTOS

8

Possible solutions

FMS
software

PPC64
platform

HIPPEROS
RTOS

ARMv7
platform

9

Possible solutions

FMS
software

PPC64
platform

HIPPEROS
RTOS

ARMv7
platform

Other test
cases

10

Possible solutions

FMS
software

PPC64
platform

HIPPEROS
RTOS

ARMv7
platform

Other test
cases

11

Possible solutions

FMS
software

PPC64
platform

HIPPEROS
RTOS

ARMv7
platform

Other test
cases

Design, improve, tweak...

12

Project roadmap

13

Project roadmap

1. Support of the PPC64 architecture for HIPPEROS

PPC64
platform

HIPPEROS
RTOS

14

Project roadmap

1. Support of the PPC64 architecture for HIPPEROS

2. Port the FMS application on HIPPEROS

FMS
software

HIPPEROS
RTOS

PPC64
platform

HIPPEROS
RTOS

15

Project roadmap

1. Support of the PPC64 architecture for HIPPEROS

2. Port the FMS application on HIPPEROS

3. Extend HIPPEROS with Mixed-Criticality scheduling capabilities

FMS
software

HIPPEROS
RTOS

PPC64
platform

HIPPEROS
RTOS

HIPPEROS
RTOS

16

Project roadmap

1. Support of the PPC64 architecture for HIPPEROS

2. Port the FMS application on HIPPEROS

3. Extend HIPPEROS with Mixed-Criticality scheduling capabilities

4. Validate the setup with experiments

FMS
software

HIPPEROS
RTOS

PPC64
platform

HIPPEROS
RTOS

HIPPEROS
RTOS

PPC64
platform

HIPPEROS
RTOS

FMS
software

17

Project roadmap

1. Support of the PPC64 architecture for HIPPEROS

2. Port the FMS application on HIPPEROS

3. Extend HIPPEROS with Mixed-Criticality scheduling capabilities

4. Validate the setup with experiments

FMS
software

HIPPEROS
RTOS

PPC64
platform

HIPPEROS
RTOS

HIPPEROS
RTOS

PPC64
platform

HIPPEROS
RTOS

FMS
software

18

Presentation Agenda

A. (Short) Presentation of the Thales application

B. Description of the RTOS

C. Description of the platform(s)

D. Experiments

19

A. The Application

20

The application use case

21

The application use case
- Provided by Thales as a case study

22

The application use case
- Provided by Thales as a case study

- “Autopilot”:

- Inputs: sensors (GPS signal), database

- Outputs: display, direction instructions

23

The application use case
- Provided by Thales as a case study

- “Autopilot”:

- Inputs: sensors (GPS signal), database

- Outputs: display, direction instructions

- 18 cooperating high criticality tasks with different periodicity attributes

24

The application use case
- Provided by Thales as a case study

- “Autopilot”:

- Inputs: sensors (GPS signal), database

- Outputs: display, direction instructions

- 18 cooperating high criticality tasks with different periodicity attributes

- Programming model: Acquisition - Execution - Restitution

25

The application use case
- Provided by Thales as a case study

- “Autopilot”:

- Inputs: sensors (GPS signal), database

- Outputs: display, direction instructions

- 18 cooperating high criticality tasks with different periodicity attributes

- Programming model: Acquisition - Execution - Restitution

- The sampled use case takes 90 seconds to run

26

27

B. The Operating System

28

Context: the HIPPEROS company builds HIPPEROS OSes
- Development of the kernel started in June 2013

- Spin-off company, from Université Libre de Bruxelles, created in January 2014

- Today: ~15 people among them 5 OS developers & researchers

- The goal is to ship certifiable OSes to safety-critical software industries

29

Main architecture and design choices

30

Main architecture and design choices
- Hard real-time operating system

31

Main architecture and design choices
- Hard real-time operating system

- Embedded targets: ARMv7, ARMv8, IA32, PowerPC 64

32

Main architecture and design choices
- Hard real-time operating system

- Embedded targets: ARMv7, ARMv8, IA32, PowerPC 64

- A new micro-kernel written from scratch

- Built for user needs, i.e. small footprint and adapted policies

- Multi-core architecture based on an asymmetric kernel

- Real-time model for user applications

- MMU support and virtual address space

- Resource sharing & IPC protocols (mutexes, semaphores, message passing, etc.)

- Usual OS services (timers, etc.)

33

Main architecture and design choices
- Hard real-time operating system

- Embedded targets: ARMv7, ARMv8, IA32, PowerPC 64

- A new micro-kernel written from scratch

- Built for user needs, i.e. small footprint and adapted policies

- Multi-core architecture based on an asymmetric kernel

- Real-time model for user applications

- MMU support and virtual address space

- Resource sharing & IPC protocols (mutexes, semaphores, message passing, etc.)

- Usual OS services (timers, etc.)

- The OS is highly configurable

34

Real-time
- User processes have real-time requirements

- Determinism and bounded guarantees

- On time as opposed to fast

- Real-time scheduling policies

- Resource usage bounded and checked

35

New micro-kernel

36

New micro-kernel
- No “Linux legacy” or other previous mono-core design

37

New micro-kernel
- No “Linux legacy” or other previous mono-core design

- Design for SMP platforms

38

New micro-kernel
- No “Linux legacy” or other previous mono-core design

- Design for SMP platforms

- Asymmetric kernel design

- One core for heavy scheduling operations

- Other cores working to service tasks

- Remote system call mechanism

39

New micro-kernel
- No “Linux legacy” or other previous mono-core design

- Design for SMP platforms

- Asymmetric kernel design

- One core for heavy scheduling operations

- Other cores working to service tasks

- Remote system call mechanism

- Most services & drivers in user space

40

New micro-kernel
- No “Linux legacy” or other previous mono-core design

- Design for SMP platforms

- Asymmetric kernel design

- One core for heavy scheduling operations

- Other cores working to service tasks

- Remote system call mechanism

- Most services & drivers in user space

- Multi-core IPC protocol to handle it

41

New micro-kernel
- No “Linux legacy” or other previous mono-core design

- Design for SMP platforms

- Asymmetric kernel design

- One core for heavy scheduling operations

- Other cores working to service tasks

- Remote system call mechanism

- Most services & drivers in user space

- Multi-core IPC protocol to handle it

42

OS Modules

HARDWARE
43

OS Modules

KERNEL

SPACE

HARDWARE

Memory &
resources Scheduler IPC

System
calls Processes Interrupts

44

OS Modules

USER

SPACE

KERNEL

SPACE

HARDWARE

Memory &
resources Scheduler IPC

System
calls Processes Interrupts

Process 1 Process 2 Driver 1

Process 3 Process 4 Driver 2

Process 5 Service 1 Service 2

45

In practice: build an application and deploy it on target

Tasks

HIPPEROS
binary

hipperosApp.bin

46

Task set defines real-time
behaviour and specification

- Timing parameters

- Periodicity

- Code

- Core affinities

- ...

47

<task>
 <identifier>1</identifier>
 <name>task1</name>
 <stackSize>8192</stackSize>
 <recurrence>UNIQUE</recurrence>
 <entryPoint>task1_main</entryPoint>
 <coreAffinity>0 1</coreAffinity>
</task>
<task>
 <identifier>2</identifier>
 <name>task2</name>
 <stackSize>8192</stackSize>
 <recurrence>PERIODIC</recurrence>
 <timingInformation>
 <wcet>42000</wcet>
 <deadline>20000</deadline>
 <period>20000</period>
 </timingInformation>
 <flags>REALTIME</flags>
 <coreAffinity>0</coreAffinity>
</task>
<task>
 <identifier>3</identifier>
 <name>task3</name>
 <stackSize>8192</stackSize>
 <recurrence>SPORADIC</recurrence>
 <timingInformation>
 <offset>10000</offset>
 <wcet>57000</wcet>
 <deadline>120000</deadline>
 <period>120000</period>
 </timingInformation>
 <flags>REALTIME</flags>
 <coreAffinity>1</coreAffinity>
</task>

For more information
- Seminal paper: OSPERT 15

- We can work together

→ HIPPEROS Academic Partner Program

→ academic@hipperos.com

- Use HIPPEROS for commercial application

→ contact us: info@hipperos.com

- You will soon be able to play with it for free!

→ HIPPEROS community edition

→ Expected release date: mid 2018

- For any information, contact me: antonio.paolillo@hipperos.com

48

mailto:academic@hipperos.com
mailto:info@hipperos.com
mailto:antonio.paolillo@hipperos.com

Mixed-criticality operating system?

49

Mixed-criticality operating system?

Vestal model
50

Mixed-criticality operating system?

Vestal model*
51

* actually, the elastic task model

3 types of tasks

Tasks

52

3 types of tasks

Tasks

High RT
tasks

53

3 types of tasks

Tasks

High RT
tasks

Low RT
tasks

54

3 types of tasks

Tasks

High RT
tasks

Low RT
tasks

Non RT
tasks

55

3 types of tasks

Tasks

High RT
tasks

Low RT
tasks

Non RT
tasks

Ci
HI, Ci

LO

56

3 types of tasks

Tasks

High RT
tasks

Low RT
tasks

Non RT
tasks

Ci
HI, Ci

LO

suspended

57

3 types of tasks

Tasks

High RT
tasks

Low RT
tasks

Non RT
tasks

Ci
HI, Ci

LO

Ti
HI, Ti

LO

suspended

58

3 types of tasks

Tasks

High RT
tasks

Low RT
tasks

Non RT
tasks

Ci
HI, Ci

LO

Ti
HI, Ti

LOcompressible

suspended

59

Extend the task set with Mixed-Criticality
<task>
 <timingInformation>
 <offset>0</offset>
 <wcet>100000</wcet>
 <deadline>200000</deadline>
 <period>500000</period>
 </timingInformation>
</task>

60

Extend the task set with Mixed-Criticality
<task>
 <timingInformation>
 <offset>0</offset>
 <wcet>100000</wcet>
 <deadline>200000</deadline>
 <period>500000</period>
 </timingInformation>
</task>

❬ Oi , Ci , Di , Ti ❭

61

Extend the task set with Mixed-Criticality
<task>
 <timingInformation>
 <offset>0</offset>
 <wcet>100000</wcet>
 <deadline>200000</deadline>
 <period>500000</period>
 <mcHigh>
 <wcetLow>25000</wcetLow>
 </mcHigh>
 </timingInformation>
</task>

❬ Oi , Ci
HI

 , Di , Ti ❭

Ci
LO

62

Extend the task set with Mixed-Criticality
<task>
 <timingInformation>
 <offset>0</offset>
 <wcet>100000</wcet>
 <deadline>200000</deadline>
 <period>500000</period>
 <mcLow>
 <periodHigh>1000000</periodHigh>
 <onModeSwitch>LET_FINISH</onModeSwitch>
 </mcLow>
 </timingInformation>
</task>

❬ Oi , Ci , Di , Ti
LO ❭

Ti
HI

63

Mode switch event - a low WCET overrun

Low tasks job instance:

<onModeSwitch>
 LET_FINISH
</onModeSwitch>

OR

<onModeSwitch>
 KILL
</onModeSwitch>

Tasks:

<periodHigh>
 1000000
</periodHigh>

OR

<suspended/>

OR

<unaffected/>

64

HI task LO WCET overrun?

65

HI task LO WCET overrun?

Global mode switch
(all jobs of all cores)

66

Switch back to LO mode?

67

Switch back to LO mode?

First idle instant

68

C. Evaluated platforms

69

NXP T2080RDB
- QorIQ T2080 platform:

- 4 dual-threaded e6500 cores (1.8 GHz)

- PowerPC 64 bits architecture

- 4 GB RAM

- OS support for caches:

- L1

- Partitioning of L2 (≃ private)

- No L3

- TLB miss software handler

70

BD SABRE Lite
- NXP i.MX 6Quad processor:

- 4 Cortex-A9 cores (800 MHz)

- ARMv7-A 32 bits architecture

- 1 GB RAM

- OS support for caches:

- Private L1 enabled

- No L2

- Not in IMICRASAR but “control board”

71

D. Experiments

72

What we evaluated

73

What we evaluated
- Idea: how to set the LO wcet such that we balance safety and efficiency?

74

What we evaluated
- Idea: how to set the LO wcet such that we balance safety and efficiency?

- Experiment execution time measurements → approximate HI WCET bounds

- HI WCET: 4x max observed execution time for each task

75

What we evaluated
- Idea: how to set the LO wcet such that we balance safety and efficiency?

- Experiment execution time measurements → approximate HI WCET bounds

- HI WCET: 4x max observed execution time for each task

- Run the Thales HI application concurrently with a dummy LO application

76

What we evaluated
- Idea: how to set the LO wcet such that we balance safety and efficiency?

- Experiment execution time measurements → approximate HI WCET bounds

- HI WCET: 4x max observed execution time for each task

- Run the Thales HI application concurrently with a dummy LO application

- Add dummy LO tasks and measure contributions

- CPU bound, no I/O

- Suspended when a mode switch occurs

- No deadline miss for HI tasks (avoid HI/LO interferences)

77

What we evaluated
- Idea: how to set the LO wcet such that we balance safety and efficiency?

- Experiment execution time measurements → approximate HI WCET bounds

- HI WCET: 4x max observed execution time for each task

- Run the Thales HI application concurrently with a dummy LO application

- Add dummy LO tasks and measure contributions

- CPU bound, no I/O

- Suspended when a mode switch occurs

- No deadline miss for HI tasks (avoid HI/LO interferences)

- Limitations:

- partitioned fixed priority scheduling

- no specific MC scheduler is implemented (future work)
78

Summary: evaluation scheme

A. Measure job execution time to bound WCET

B. Run the HI use case with a LO application

79

Summary: evaluation scheme

A. Measure job execution time to bound WCET

B. Run the HI use case with a LO application

80

Job execution time measurements

- Thales FMS application: 18 tasks

- 12 tasks have negligible execution time and/or are not periodic

- We plot the maximum observed execution time of all the jobs of each task

- Repeated 10 times, very stable measurements (small stdev)

81

Job execution time measurements (max observed)
T2080RDB SABRE Lite

82

Observation

Use case uses less than 10%
of the platform CPU

83

Summary: evaluation scheme

A. Measure job execution time to bound WCET

B. Run the HI use case with a LO application

84

How to set WCET LO?

85

How to set WCET LO?

86

Safety
Efficiency

How to set WCET LO?

87

Safety
Efficiency

0 Ci
HI

How to set WCET LO?

88

Safety
Efficiency

0 Ci
HICi

LO

How to set WCET LO?

89

Safety
Efficiency

0 Ci
HICi

LOCi
LO

How to set WCET LO?

90

Safety
Efficiency

0 Ci
HICi

LOCi
LO

How to set WCET LO?

91

Safety
Efficiency

0 Ci
HICi

LOCi
LO

mode switches

How to set WCET LO?

92

Safety
Efficiency

0 Ci
HICi

LOCi
LO

mode switches

time for LO app

Evolution of available LO CPU time and # mode switches
SABRE Lite

T2080RDB

93

T2080RDB SABRE Lite

Evolution of available LO CPU time, per core

94

Conclusions

95

Conclusions
- About the porting : no line of the original core application were modified

- Industrial use case takes less than 10% on the considered platform

- We can use the remaining 90% for LO app without compromising HI app

- Straightforward MC mode switch support at OS level

- Future work involves:

- Fine grained control over interferences

- Implementation of MC scheduling algorithms

- Evaluations: non trivial LO app (memory, file systems, I/O) with compressible/incompressible

- Typical industrial use cases 96

97

Where is the balance?

98

0 Ci
HICi

LOCi
LO

time for LO app

mode switches

Where is the balance?

99

0 Ci
HICi

LOCi
LO

mode switches

time for LO app

LO app
scheduling ratio

100

101

