
VSync: Push-Button Verification and Optimization for
Synchronization Primitives on Weak Memory Models

Jonas Oberhauser
Huawei Dresden Research Center

Germany
Huawei OS Kernel Lab

China

Rafael Lourenco de LimaChehab
Huawei Dresden Research Center

Germany
Huawei OS Kernel Lab

China

Diogo Behrens
Huawei Dresden Research Center

Germany
Huawei OS Kernel Lab

China

Ming Fu∗

Huawei Dresden Research Center
Germany

Huawei OS Kernel Lab
China

Antonio Paolillo
Huawei Dresden Research Center

Germany
Huawei OS Kernel Lab

China

Lilith Oberhauser
Huawei Dresden Research Center

Germany
Huawei OS Kernel Lab

China

Koustubha Bhat
Huawei Dresden Research Center

Germany
Huawei OS Kernel Lab

China

Yuzhong Wen
Huawei OS Kernel Lab

China

Haibo Chen
Huawei OS Kernel Lab

Shanghai Jiao Tong University
China

Jaeho Kim
Huawei Dresden Research Center

Germany
Huawei OS Kernel Lab

China

Viktor Vafeiadis
Max Planck Institute for Software

Systems (MPI-SWS)
Germany

ABSTRACT

Implementing highly efficient and correct synchronization primi-

tives on modernWeak Memory Model (WMM) architectures, such

as ARM and RISC-V, is very difficult even for human experts. We

introduce VSync, a framework to assist in optimizing and verifying

synchronization primitives on WMM architectures. VSync auto-

matically detects missing and overly-constrained barriers, while

ensuring essential safety and liveness properties. VSync relies on

two novel techniques: 1) Adaptive Linear Relaxation (ALR), which

utilizes barrier monotonicity and speculation to quickly find a cor-

rect maximally-relaxed barrier combination; and 2) Await Model

Checking (AMC), which for the first time makes it possible to check

termination of await loops on WMMs.

We use VSync to automatically optimize and verify state-of-the-

art synchronization primitives from systems like seL4, CertiKOS,

musl libc, DPDK, Concurrency Kit, and Linux, as well as from

the literature. In doing so, we found three correctness bugs on

deployed systems due to missing barriers and several performance

∗Ming Fu (ming.fu@huawei.com) is the corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASPLOS ’21, April 19ś23, 2021, Virtual, USA

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8317-2/21/04.
https://doi.org/10.1145/3445814.3446748

bugs due to overly-constrained barriers. Synchronization primitives

optimized byVSync have similar performance to industrial libraries

optimized by experts.

CCS CONCEPTS

· Theory of computation→ Verification by model checking;

· Software and its engineering→ Software testing and debugging;

· Computer systems organization→ Multicore architectures.

KEYWORDS

model checking; weak memory models

ACM Reference Format:

Jonas Oberhauser, Rafael Lourenco de Lima Chehab, Diogo Behrens, Ming

Fu, Antonio Paolillo, Lilith Oberhauser, Koustubha Bhat, Yuzhong Wen,

Haibo Chen, Jaeho Kim, and Viktor Vafeiadis. 2021. VSync: Push-Button

Verification and Optimization for Synchronization Primitives onWeakMem-

ory Models. In Proceedings of the 26th ACM International Conference on

Architectural Support for Programming Languages and Operating Systems

(ASPLOS ’21), April 19ś23, 2021, Virtual, USA. ACM, New York, NY, USA,

16 pages. https://doi.org/10.1145/3445814.3446748

1 INTRODUCTION

Modern multicore architectures, such as ARM, Power, and RISC-V,

follow weak memory models (WMMs) [18, 35, 81, 89], which allow

them to execute independent memory operations out of order. As

these WMMs are becoming increasingly pervasive (e.g., Huawei

Kunpeng servers [44] and recent Apple computers [85] run on

530

https://www.acm.org/publications/policies/artifact-review-and-badging-current
mailto:ming.fu@huawei.com
https://doi.org/10.1145/3445814.3446748
https://doi.org/10.1145/3445814.3446748

ASPLOS ’21, April 19ś23, 2021, Virtual, USA J. Oberhauser, R. Chehab, D. Behrens, M. Fu, A. Paolillo, L. Oberhauser, K. Bhat, Y. Wen, H. Chen, J. Kim, V. Vafeiadis

ARM), a lot of concurrent software designed for older, fairly strong

memory models such as SPARC/x86 TSO [82, 83] need to be ported

to these modern WMMs.

The good news is that most software uses only synchronization

primitives for inter-thread communication; provided synchroniza-

tion primitives are correct, such software work onWMMs out of the

box [15]. The bad news is that the synchronization primitives them-

selves heavily rely on the order of a few keymemory operations, and

can break in subtle and non-reproducible ways if these operations

happen to be executed out of order. Thus, WMMs include so-called

barriers, which enforce some ordering among memory operations

by sacrificing the substantial performance gains of WMMs. As syn-

chronization primitives are often the only means of inter-thread

communication, they lie on the critical path, and unnecessary bar-

riers in synchronization primitives affect the performance of the

complete system [1]. For this reason, experts spend a lot of time

and effort in identifying the key memory operations that need to be

executed in order, and optimizing the usage of barriers accordingly

(e.g., [26, 63ś65, 90]).

Naturally, ensuring efficiency and correctness of these primi-

tives gets restricted to only a small group of experts. Although this

is deemed acceptable, our evaluation of several synchronization

primitives implemented and optimized by experts for ARM and

other WMMs shows that even experts are prone to getting it wrong,

introducing either unnecessary barriers, or worse: subtle data races

and hangs. Due to non-determinism introduced by concurrency,

and even more so by WMMs, these problems are hard to reproduce

and debug. As synchronization primitives are generally assumed

to be correct by programmers, it is also hard to trace these prob-

lems back to the synchronization primitives. For these reasons, it

is our opinion that selecting barriers to ensure performance and

correctness of synchronization primitives on WMMs is not a task

that should be left to humans.

In this paper, we present VSync, a framework that automates

this task of ensuring performance and correctness of synchroniza-

tion primitives on WMMs. It takes a synchronization primitive

implemented with possibly overly-constrained barriers (e.g., se-

quentially consistent barriers on every memory operation) and

optimizes them to a maximally-relaxed yet correct barrier combina-

tion. We achieve this by strategically relaxing the barriers (precisely,

relaxing the barrier modes) and using amodel checker [46] to check

each relaxation.

We encountered two main challenges. First, the state space of

possible barrier combinations is huge (exponential in the size of the

program) and so naively searching through it (e.g., with a breadth-

first-search) is hopeless. We overcome this challenge by exploiting

the monotonicity [87] of barrier relaxationsÐnamely, relaxing an

already incorrect barrier combination can never produce a correct

one. We develop the Adaptive Linear Relaxation (ALR) algorithm,

which gradually relaxes one barrier at a time until no further correct

relaxation is possible, and uses adaptive timeouts to guide the search

towards a solution. This process invokes the model checker only a

polynomial number of times, and still produces a maximally-relaxed

barrier combination.

Second, state-of-the-art model checkers cannot automatically de-

tect one key class of bugs introduced by WMMs: hangs. As a result,

simply running the ALR algorithmwith existing model checkers for

locked = 0, q = 0;

𝑇1 : lock 𝑇2 : unlock

locked = 1;

q = 1;

while (locked == 1);

/* Critical Section */

while (q == 0);

locked = 0;

Figure 1: Await loops in one path of an MCS lock. 𝑇1 signals

q = 1 to notify𝑇2 that it enqueued. Once𝑇2 receives the noti-

fication it signals back locked = 0 to pass the lock to 𝑇1.

WMMs often yields incorrect barrier combinations. The reason for

this limitation is quite fundamental. The state-of-the-art in model

checking for WMMs is stateless model checking (SMC) [10, 13, 53ś

56], which examines individual execution traces of bounded length

without recording the set of visited states and so cannot, in general,

reason about the (non)-termination of programs1. Nevertheless,

in all the synchronization primitives we have examined, hangs

are caused exclusively by await loops: loops that do not have any

side-effects except perhaps for their final iterations. Noting that

reasoning about the termination of await loops is substantially eas-

ier than the general case, we develop Await Model Checking (AMC),

which extends SMC with the ability to prove termination of await

loops (await termination, AT), and show that it is sufficient for

verifying liveness of synchronization primitives.

We illustrate both challenges with a greatly simplified portion

of the MCS lock [40, 70] shown in Fig. 1. Two threads𝑇1 and𝑇2 use

await loops to synchronize: 𝑇2 waits for q to change from 0, as a

signal that𝑇1 has been enqueued.𝑇1 waits for locked to change from

1, as a signal that 𝑇2 has released the lock. Without any barriers

placed, onARM, Power and RISC-V, thewrite operations of𝑇1 can be

executed out of order. In this case 𝑇2 may receive the signal q = 1,

leave its loop, and write locked = 0 before 𝑇1 writes locked = 1.

Then𝑇1 never observes the value locked = 0 that it overwrites, and

is stuck in the loop forever. Even for this tiny example, there are 5

possible places for inserting barriers (one for each memory access)

and if the architecture has 3 different modes of barriers, we have a

search space of (3 + 1)5 = 1024 possible combinations.

As case studies, we used VSync to formally verify and optimize

synchronization primitives on WMMs, some of which were imple-

mented by experts for WMMs, and some of which we implemented

ourselves from literature. Those include: five locks from Herlihy

and Shavit’s textbook [40], the big kernel CLH lock of seL4 [51, 79],

the MCS lock in CertiKOS [38, 39, 50], DPDK [36], Concurrency Kit

[16], and in an internal Huawei product (ported from x86 to ARM),

the TWA lock [28], themutex inmusl libc [7], Linux’s qspinlock [25]

and NUMA-aware locks [30].

Most of these synchronization primitives are formally verified

on WMMs for the first time. VSync reported 3 barrier bugs: an

overly-relaxed barrier in the seL4 lock, a missing barrier in the

ported MCS lock and an overly-relaxed barrier in the DPDK MCS

1There exist also some stateful model checkers for WMMs [12, 21, 42, 47, 57, 81, 91],
which in principle can detect hangs (though most implementations do not actually do
so). Sadly, however, they do not scale: they run out of memory on non-trivial programs
such as synchronization primitives.

531

VSync: Push-Button Verification and Optimization for Synchronization Primitives on Weak Memory Models ASPLOS ’21, April 19ś23, 2021, Virtual, USA

Table 1: Mapping from IMM/VSync to RISC-V and ARMv8.

For ARMv8.1 and later, read-modify-write operations can

also map to specialized instructions, e.g., atomic_xchg to SWPAL.

VSync RISC-V ARMv8

atomic_xchg amoswap.w.aqrl LDAXR;STLXR

atomic_xchg_acq amoswap.w.aq LDAXR;STXR

atomic_xchg_rel amoswap.w.rl LDXR;STLXR

atomic_xchg_rlx amoswap.w LDXR;STXR

atomic_read fence [rw,rw]; lw; fence [r,rw] LDAR

atomic_read_acq lw; fence [r,rw] LDAR

atomic_read_rlx lw LDR

atomic_write fence [rw,w]; sw; fence [rw,rw] STLR

atomic_write_rel fence [rw,w]; sw STLR

atomic_write_rlx sw STR

atomic_fence fence [rw,rw] DMB SY

atomic_fence_acq fence [r,rw] DMB LD

atomic_fence_rel fence [rw,w] DMB SY

atomic_fence_rlx NOP NOP

lock. The first two bugs compromise mutual exclusion of critical

sections. The bug in the DPDK MCS lock can potentially cause

hangs. The three bugs have been confirmed by the maintainers and

our patches have been merged.

Moreover, the synchronization primitives optimized by VSync

have similar performance as industrial libraries optimized by ex-

perts. Even for complex code such as Linux’s qspinlock we quickly

obtain similar results to the implementation optimized by experts.

Contributions. The contributions of this paper are:

• The VSync framework, which automatically optimizes bar-

riers in synchronization primitives on WMMs to a provably

correct and maximally-relaxed combination (ğ2.2).

• Adaptive Linear Relaxation (ALR), an efficient barrier opti-

mization algorithm based on speculation (ğ3).

• AwaitModel Checking (AMC), which for the first time allows

stateless model checkers to verify termination of side-effect-

free loops on WMMs (ğ4).

• A set of provably-correct and high-performance synchro-

nization primitives for practical use in industry (ğ5).

• A report of our experience in using VSync in several open-

source projects and an internal Huawei product (ğ6).

2 BACKGROUND AND OVERVIEW OF VSYNC

2.1 Weak Memory Models

Barriers and modes. To improve performance, modern architec-

tures apply optimizations such as store buffering and load buffer-

ing [86]. These optimizations can cause observable memory access

reorderings in concurrent programs and introduce subtle bugs [23,

87]. To write correct code, programmers need to study the often

complex WMM specification of their target platform, which defines

the visible effects allowed by the optimizations, and also how to

(locally) turn them off as needed by means of so called barriers.

The VSync atomics library offers two types of barriers (see Ta-

ble 1): implicit barriers, i.e., barriers attached to atomic memory

operations; and fences, also called explicit barriers, i.e., stand-alone

rlx

acq rel

sc
safer

faster

Figure 2: Partial order of barrier modes.

barriers. We consider four common modes of barriers: rlx (relaxed),

acq (acquire), rel (release), and sc (sequentially consistent). They al-

low different levels of optimizations, and their relation is illustrated

in Fig. 2. Modes appear in the suffix of each barrier, sc being the

default mode. The precise meaning of the modes depends on the

WMM, but intuitively, the relaxed mode rlx allows all optimizations

whereas the sequentially consistent mode sc allows no (visible)

optimizations. The modes rel and acq are in-between and are used

to ensure ordering across threads while still providing good perfor-

mance; for example, in Fig. 1 on ARMv8, a barrier with rel mode

on q = 1 can be used to ensure locked = 1 of 𝑇1 will be performed

before locked = 0 of 𝑇2, and not the other way around.

VSync allows users to plug in modules implementing theWMMs

of the target platforms. It supports not only traditional memory

models, such as SPARC/x86 TSO [82] and PSO [83], but also the

more advanced dependency-tracking memory models [56], such

as ARMv7 [18], ARMv8 [35], RISC-V [89], PowerPC [68], and the

Linux-kernel memory model (LKMM) [3]. Currently, VSync only

includes a module for the intermediate memory model (IMM) [80],

which unifies most dependency-tracking WMMs with provably-

correct barrier mappings. Table 1 lists a few mappings from VSync

atomics to RISC-V and ARMv8.

Impact of barriers. Synchronization primitives employ many

barriers and often multiple awaits (see Table 2 on Page 8). Awaits

are either used directly by the primitive, e.g., for waiting on other

threads to leave the critical section; or they are used by VSync to

model kernel calls such as futex_wait() which prevents the thread

from running until a condition is met. Each await operates quite

differently, and AT (await termination) cannot be guaranteed by

placing barriers on the polled variable; e.g., to ensure AT of 𝑇1,

which polls locked in Fig. 1, barriers need to be added to q; without

these barriers, 𝑇1 will be forever spinning on while(locked == 1),

even if all accesses to locked use sc-mode. For this reason, finding

the correct barriers to ensure AT is challenging and cannot be

solved by pattern-matching, or other simple means.

On the one hand, not finding these barriers results in hangs

on real hardware, which we have experienced, e.g., with the TWA

lock and the MCS lock. Moreover, with insufficient barriers, mutual

exclusion of the synchronization primitives is violated; this com-

promises the integrity of the critical section, resulting in data races

and corrupted data, e.g., in the subtle bug we found in the CLH

lock of seL4 (discussed in details in ğ6). On the other hand, over-

constraining tremendously hurts performance. Table 3 on Page 9

shows an excerpt of our kernel-level benchmark with these syn-

chronization primitives. By replacing sc barriers with more relaxed

barriers, we achieve considerable speedup. This is not unexpected:

532

ASPLOS ’21, April 19ś23, 2021, Virtual, USA J. Oberhauser, R. Chehab, D. Behrens, M. Fu, A. Paolillo, L. Oberhauser, K. Bhat, Y. Wen, H. Chen, J. Kim, V. Vafeiadis

1 typedef atomic_t lock_t;

2 void lock_acquire(lock_t *lock) {

3 do {

4 while(atomic_read(lock)) { }

5 } while(atomic_xchg(lock, 1));

6 }

7 void lock_release(lock_t *lock) {

8 atomic_write(lock, 0);

9 }

Figure 3: Example TTAS lock

implementation

optimization report

lock_acquire

atomic_read --> rlx

atomic_xchg --> acq

lock_release

atomic_write --> rel

Figure 4: VSync optimiza-

tion report

removing just one unnecessary barrier in the Linux-spinlock im-

proved overall performance of the Linux-kernel by 4% [1].

2.2 The VSync Framework

The VSync framework allows users to verify and optimize synchro-

nization primitives. To explain the main components of VSync, we

consider the example of a user implementing the test-and-test-and-

set (TTAS) lock, following the literature [40]. The implementation is

depicted in Fig. 3. To acquire the lock, a thread atomically exchanges

the lock value with 1 (Line 5). If the old value is 0, the thread enters

the critical section, otherwise keeps retrying. To avoid excessive

cache invalidation, the thread first waits for the lock to be released

before trying to acquire it (Line 4). To release the lock, the thread

sets its value to 0 (Line 8). Being a well-known algorithm, the user

assumes the code is correct on sequential consistency. Now the

user wants to optimize the barriers.

The user calls the vsyncer optimize command (see Fig. 5), pro-

viding the TTAS lock implemented with VSync atomics in Table 1.

Note that atomic operations without suffix have sc barrier modes.

A generic client code is automatically linked together for the subse-

quent process. VSync outputs a barrier-optimization report (Fig. 4),

which suggests relaxations, e.g., modifying Line 5 to use an acq

barrier mode as in atomic_xchg_acq(). To produce the optimization

report, the ALR optimizer in VSync gradually relaxes the barriers,

while deploying the AMC to verify the correctness of the current

barrier combination. The suggested barriers in the report are guar-

anteed to be correct and maximally-relaxed, i.e., relaxing any of

the barriers further causes the implementation to fail on the WMM

defined by the currently selected module.

Generic client code.Model checking requires a client code, i.e.,

a main function which generates some number of threads that

call lock_acquire() and lock_release() functions, access shared

variables, and so on. Model checking can only verify the correctness

of a library with respect to that client code. We provide a client code

for synchronization primitives which is parametric in the number

𝑁 of threads. These threads access a critical section through the

synchronization primitive and increment a shared variable. The

mutual exclusion is verified by asserting an expected value of the

shared variable. Liveness is guaranteed by AMC, as discussed later.

It is up to the user of VSync to find a sufficiently large parameter

𝑁 for which the client code can fully exercise the code and thus

produce a dependable verification and optimization result.

We compile the synchronization primitives alongwith the generic

client code with clang [6] into an LLVM intermediate representa-

tion (IR) module, called input IR in Fig. 5.

sync_prim.c

VSync

atomics

clang

barrier
analyzer

mutation
checker

AMC

generic
client code

ALR
optimizer

optimization
report

input IR mutated IR

result

#barriers

barrier-mode
combination

status
imports

$ vsyncer optimize sync_prim.c

Figure 5: vsyncer optimize reports the maximally-relaxed

barrier-mode combination of a synchronization primitive.

Barrier analyzer and ALR optimizer.We analyze the input IR

module for the position and number of barriers. This information

is passed to the ALR optimizer, which then starts the optimization

as described in ğ3. Once finished, the optimizer returns a report to

the user similar to Fig. 4.

Mutation checker and AMC. The optimizer decides the next

barrier-mode combination to be checked; AMC performs the ac-

tual check (ğ4). The mutation checker intermediates the process

by mutating the input IR according to the desired barrier-mode

combination and subsequently calling AMC. AMC returns success

if the mutated IR is correct and failed otherwise. The mutation

checker forwards the check status to the optimizer. In the following

sections, we focus on the ALR optimizer and AMC components.

3 ADAPTIVE LINEAR RELAXATION

We present an efficient algorithm to maximally relax correct input

barrier-mode combinations for a given synchronization primitive.

A barrier-mode combination 𝑏 is an array representing the barrier

modes of the synchronization primitive. If the synchronization

primitive, with the modes in combination 𝑏, satisfies mutual exclu-

sion and termination, we say 𝑏 is correct. If any further relaxation

of 𝑏 is incorrect, we say 𝑏 is maximally-relaxed. We highlight this

important definition:

Definition 1 (Maximally-relaxed combination). A combina-

tion 𝑏 is maximally-relaxed iff 1) 𝑏 is correct, and 2) there is no correct

combination 𝑏 ′ such that 𝑏 ′ ≠ 𝑏 and 𝑏 ′[𝑖] ⊏ 𝑏 [𝑖] ∨ 𝑏 ′[𝑖] = 𝑏 [𝑖] for

all 𝑖 ∈ {1, . . . , |𝑏 |}, where rlx ⊏ acq ⊏ sc, rlx ⊏ rel ⊏ sc, and |𝑏 | is

the length of 𝑏.

Note that there can be multiple maximally-relaxed combina-

tions; we only find one of them. In general, finding all maximally

relaxed solutions is intractable, as their number is in the worst

case exponential in the number of barriers. This is in particular

the case when using redundant fences (i.e., explicit barriers), for

which usually there are multiple correct positions. For example, if

two fences are inserted in each of 𝑛 lines, VSync can in each line

pick either the first or the second fence, leading to 2𝑛/2 combina-

tions. In practice, most synchronization primitives have exactly one

maximally-relaxed barrier combination if no fences are being used;

this is true for all except two of the synchronization primitives

studied in this paper. Even for the remaining two, the performance

difference between the different maximally relaxed combinations

is negligible.

Linear Relaxation (LR). Algorithm 1 depicts our base algo-

rithm, LR. One-by-one, LR relaxes each barrier 𝑏 [𝑖], picking the

533

VSync: Push-Button Verification and Optimization for Synchronization Primitives on Weak Memory Models ASPLOS ’21, April 19ś23, 2021, Virtual, USA

function LR()

𝑏 ← [sc, . . . , sc]

for 𝑖 ∈ [1, . . . , |𝑏 |] do

for𝑚 ∈ [rlx, acq, rel, sc] do

𝑏 [𝑖] ←𝑚

if 𝑏 [𝑖] = sc ∨ check(𝑏) then
break

return 𝑏

Algorithm 1: Linear Relaxation (LR)

function ALR()

𝜏 ← 10ms

while true do

𝑏 ← LR𝜏 ()

if 𝑏 = [sc, . . . , sc] ∨ check(𝑏) then
return 𝑏

𝜏 ← 𝜏 + time taken to check 𝑏

Algorithm 2: Adaptive LR (ALR)

it
er
at
io
n
s

𝑏 [1] 𝑏 [2] 𝑏 [3] check(𝑏)

rlx sc sc true

rlx rlx sc false

rlx acq sc true

rlx acq rlx false

rlx acq acq false

rlx acq rel true

Figure 6: Linear Relaxation of TTAS

lock example. LR() = [rlx, acq, rel]

most relaxedmode (with the ordering from Fig. 2) that is still correct.

LR finds this mode by trying each possibility from weakest (rlx) to

strictest (sc), stopping as soon as the combination 𝑏 is correct ś in

the worst case when 𝑏 = [sc, . . . , sc]. Figure 6 shows the execution

of LR for the TTAS lock (Fig. 3), which has 3 barriers. The output

of LR() is [rlx, acq, rel], which is maximally relaxed. At the core

of LR is the check(𝑏) function, which calls AMC underneath after

mutating the barriers of the synchronization primitive according

to the combination 𝑏. If the mutated synchronization primitive is

incorrect, or if some barrier mode in 𝑏 is not applicable to the ac-

tual barrier in the code, check(𝑏) returns false; otherwise check(𝑏)

returns true, showing that the mutation with 𝑏 is correct.

Speculative checks. For each barrier in 𝑏, LR makes up to three

calls to check(𝑏), at most one of which returns true. To return true,

AMC has to inspect every execution, while to return false, AMC

can stop as soon as it finds the first execution that triggers a bug.

Therefore, checks that return true are usually slower than checks

that return false (up to two orders of magnitude in our experience,

see ğ5). To avoid these up to |𝑏 | highly expensive calls, we intro-

duce an adaptive timeout mechanism, which speeds up the gradual

relaxation. We speculatively accept barrier-mode combinations as

correct if AMC takes longer than a timeout 𝜏 to check them. For this,

we use the function check𝜏 (𝑏), which returns true if 𝑏 is correct

or if AMC takes longer than 𝜏 to terminate. We define LR𝜏 to be

Algorithm 1 with the speculative check function check𝜏 called in

place of function check.

Adaptive timeouts. Selecting the right timeout is crucial for

successful and efficient exploration, but cannot be done a priori. Too

large values of 𝜏 hinder the convergence of the search, while too

small values can lead LR𝜏 to return overly-relaxed combinations.

To solve this, our Adaptive Linear Relaxation (ALR) algorithm in

Algorithm 2 starts with a low value of 𝜏 (e.g., 10ms), and increases

it until a correct combination is produced. In more detail, ALR calls

LR𝜏 to find a speculatively-correct combination 𝑏, which is then

fully checked without a timeout. If combination 𝑏 is really correct,

it must be maximally relaxed and is returned. If combination 𝑏 is

actually incorrect, ALR restarts the search afresh with a 𝜏 value

slightly larger than the time AMC took to check 𝑏.

With ALR, the time to produce a correct and maximally-relaxed

barrier combination for the Linux qspinlock takes three minutes

(instead of several hours with LR and no timeouts); subsequently

verifying that this combination is indeed correct without timeouts

takes another eight minutes.

4 AWAIT MODEL CHECKING

As discussed in ğ1, the state-of-the-art in verification on WMMs

is stateless model checking (SMC) [10, 13, 14, 27, 43, 52, 54ś56, 71];

that is, enumerating all possible executions of a concurrent pro-

gram subject to certain optimizations such as dynamic partial order

reduction (DPOR) [34]. By design, however, SMC only works for

programs that have a finite state space (i.e., only a finite number of

executions) and terminate unconditionally (i.e., each execution is

of finite length). As a result, SMC cannot soundly handle programs

with await loops because their termination onWMMs often depends

on the loops not continuously reading stale values (e.g., Fig. 1). As

such, there is no a priori bound on the number of iterations such

loops can observe stale values.

Await loops are ones whose execution is free of side-effects ex-

cept perhaps in their last iteration. They are extremely common

in synchronization primitives, e.g., when waiting for a resource to

become available. Without sufficient barriers, under WMM, such

loops can repeatedly read stale values, which can cause hangs. In

the synchronization primitives we have studied, they are the only

potential source of hangs. Await loops can be manually annotated

or easily identified by static analysis [33], and it is even common

for model checkers to convert simple await loops into assume state-

ments, but, as we will see in ğ4.4, such a conversion is sound only

for checking safety properties, not for checking their termination.

In ğ4.1, we present our assumptions about programs; in ğ4.2,

we present our approach for checking termination of await loops;

and in ğ4.4 we show why seemingly similar approaches from the

literature do not solve the problem.

4.1 Applicable Domain

We assume programs that satisfy the following two conditions:

1) awaits are side-effect-free except in their final iteration, and 2)

only awaits can cause them to hang. We make this precise by the

following two principles.

Bounded-Effect Principle: Side-effects of non-final iterations

of an await must be contained within that iteration: they can

only write to local variables (e.g., registers), whose values

must not be read by subsequent await iterations or by any

code thereafter. In contrast, the final iteration of an await

is allowed to have visible side-effects, e.g., by performing a

compare-and-swap operation which acquires a resource.

Bounded-Length Principle: There is a constant integer 𝐶

such that if all awaits are unrolled once, all executions of the

program must have at most 𝐶 steps.

534

ASPLOS ’21, April 19ś23, 2021, Virtual, USA J. Oberhauser, R. Chehab, D. Behrens, M. Fu, A. Paolillo, L. Oberhauser, K. Bhat, Y. Wen, H. Chen, J. Kim, V. Vafeiadis

These conditions are satisfied by all synchronization primitives

we have studied as well as by all programs for which existing

stateless model checkers are sound. Thus, they do not restrict the

domain of WMM model checkers, but rather extend it to programs

with non-terminating awaits. Existing model checkers require that

programs are loop-free (e.g., [54, p. 97]) or have acyclic, finite state

spaces (e.g., [74, p. 22]), which are stronger conditions than our

Bounded-Length principle.

4.2 Checking Termination of Await Loops

Our technique for proving (non-)termination of await loops is made

possible by two key insights. The first is that infinite executions

caused by non-terminating awaits can be represented as finite exe-

cutions, which we call stagnant.

Definition 2. A (possibly partial) execution is stagnant iff all

remaining running threads are inside an await loop that they cannot

exit based on the values currently available to them.

Note that we consider here partial executions, because complete

stagnant executions are infinite and thus cannot be fully gener-

ated by a model checker. Instead of waiting until the execution

becomes infinite, this definition captures the moments in which it

is foreseeable that the execution can be extended to an infinite one.

Perhaps counterintuitively, in some WMMs such as C11, partial

stagnant executions can sometimes be extended to terminating

executions due to so-called out-of-thin-air behaviors [59, p. 7]: e.g.,

one of the running threads might (in such WMMs) speculate that it

will eventually leave the await and speculatively execute a write

that lies behind its await, which allows other threads to leave their

loops and then produce writes that allow the original thread to

really leave the loop and hence justify it’s speculation.

However, even in thoseWMMs, each stagnant execution can also

be extended to a non-terminating execution, by simply avoiding

this kind of speculation. This forces threads to only generate writes

that are inside their await loops. By the Bounded-Effect principle,

these writes never produce new values for other threads, and hence

the set of available values never changes. Since none of the available

values allow leaving the loop, the threads are permanently stuck.

This results in a non-terminating infinite execution.

Conversely, if we have an infinite execution, there is also a stag-

nant, finite execution. Recall that an execution is stagnant if all

remaining running threads are inside an await and none of the

available writes let them break the loop. Indeed, we will trim the

infinite execution to a finite execution in which each remaining

running thread has only one available write for each location, and

reading those writes does not allow the threads to exit the loop.

Observe first that the Bounded-Effect and Bounded-Length princi-

ples ensure that each thread only has a finite set of writes to read

from. Standard WMMs guarantee that threads do not read a stale

value forever (e.g., progress axiom in [89, p. 88] and Sec. 7.17.3-16

in [45]). Since the set of writes is finite, this guarantee implies that

a thread that is stuck inside an await must eventually read from

the most up-to-date writes on each location. We trim the infinite

execution of that thread to the point where those most up-to-date

writes become the only available writes; by doing this for each

thread, we obtain as promised a stagnant, finite execution.

Thus a stagnant finite execution exists iff an infinite execution

exists. Exploiting this, a model checker that enumerates all finite

executions of a program can detect non-terminating awaits by

looking for stagnant executions. In Fig. 1 that would be an execution

in which 𝑇1 does not exit its while loop because locked = 1 is the

only value available to 𝑇1.

The problem, however, is that enumerating all finite executions

of a program with loops may not be possible, because the program

itself can still have an infinite number of finite executions. Consider,

for example, the expected execution order of Fig. 1 where𝑇2 writes

last. After 𝑇2 wrote locked = 0, 𝑇1 is obviously allowed to observe

this new value. However, on WMM it is also allowed to read the

stale locked = 1 any number 𝑁 = 1, 2, 3, . . . of times [48]. This can,

for instance, happen because the stale value remains in its cache

for a non-deterministic (but finite) amount of time. Each value of 𝑁

gives a different execution. Moreover, none of these executions is

stagnant because while reading locked = 1 in each iteration of the

loop, the value locked = 0, which would allow the thread to exit the

loop, remains available. A model checker might be stuck exploring

this infinite number of non-stagnant executions and never reach

the stagnant execution indicating the termination problem.

We address this problem with a second insight: if an execution

that repeats the same await loop iteration twice in a row Ð reading

the same values Ð results in an error, e.g., a violated assertion, then

an execution without such repetitions can also trigger the same

error. Thus executions with such repetitions can be ignored. We

call such executions wasteful.

Definition 3. An execution is wasteful iff two consecutive itera-

tions of an await read exactly the same values.

AMC does not explore wasteful executions of the given program.

However, it explores all other executions and reports an AT viola-

tion if any of them is stagnant. The correctness of AMC follows

from the following theorem.

Theorem 1 (AMC Correctness). Let 𝑃 be a program satisfying

the Bounded-Effect and Bounded-Length principles (ğ4.1). Then, the

following properties hold:

(1) 𝑃 has a finite number of non-wasteful executions.

(2) If 𝑃 has an execution with a safety bug, then it also has an

execution with the same bug that is not wasteful.

(3) If 𝑃 has an infinite execution, then it also has a stagnant exe-

cution that is not wasteful.

Property 1 ensures that AMC terminates when enumerating all

executions that are not wasteful. Intuitively, it holds because the

Bounded-Length and Bounded-Effect properties imply that there

is a bounded number of writes in each execution, and since con-

secutive iterations of each await loop of a non-wasteful execution

have to read from a different write, the number of possible itera-

tions is bounded. Property 2 says that enumerating non-wasteful

executions suffices for finding safety bugs, while property 3 says

that it suffices for reporting liveness bugs. Intuitively, these hold

because of the Bounded-Effect property, which allows us to remove

all but the last iteration of each await loop. We provide proofs in

our technical report [77].

535

VSync: Push-Button Verification and Optimization for Synchronization Primitives on Weak Memory Models ASPLOS ’21, April 19ś23, 2021, Virtual, USA

4.3 Summary of Implementation

Our AMC implementation generates executions incrementally, i.e.,

by adding one read or write of one thread at a time. Themain change

over existing model checkers is that we never add reads that would

result in a wasteful execution. We ensure this by adding a read to

an await loop iteration only if either a) it is the first iteration of the

loop, b) this read or a previous read of this iteration reads a value

not read in the preceding iteration of this loop (hence ensuring

that the execution is not wasteful no matter what subsequent read

operations will read), or c) there is a later read in the iteration

that can read a new value (i.e., we can still avoid generating a

wasteful execution later). As long as none of these options are

possible (e.g., because no values distinct from those read in the

previous iteration are available), the exploration of that thread is

paused. This can lead to a deadlock-like situation in which the

model checker cannot explore anything because the exploration of

all currently running threads is paused. It is easy to see that this

situation describes a stagnant execution, and is thus proof of a non-

terminating await. Conversely, it can be shown that every stagnant

non-wasteful execution, if explored in this manner, will eventually

lead to such a situation. This permits us to detect non-termination

by checking whether such a situation occurs during exploration,

without any explicit check for stagnancy.

4.4 Comparison to State-of-the-Art

In the literature there are some techniques that seem at first glance

similar to our approach. However, the subtle differences prevent

them from effectively detecting non-terminating loops. We now

discuss the limitations of these techniques.

Stateful model checking. The first technique is to record all

visited program states, which can be used to find cycles in the state

space. This technique has been used so far only in model checkers

for strong memory models [42, 91]. In theory, it can probably be

extended to some (but not all) WMMs [11]. Even where applicable,

however, this approach is impractical due to the huge number of

reachable explicit program states.

Fairness. The second technique is fairness [71, 75], which en-

sures that executions cannot indefinitely read stale values. A model

checker that uses fairness ensures that each await only reads a

finite number of times from the same value, if a more up-to-date

value is available or can be produced by another thread. This is an

important step in the direction of detecting await termination, as

an experienced verification engineer can inspect surprisingly long

execution traces generated by these model checkers to look for

hints that an await is not terminating. Unlike the set of executions

that are non-wasteful, the set of fair executions that these model

checkers explore is not finite. Thus, the model checker, on its own,

cannot determine when it is safe to stop exploring. Furthermore, it

cannot automatically detect whether a particularly long execution

is an indicator for a non-terminating loop. In our technique, this is

solved by checking if the execution is stagnant.

Bounded loopunrolling.The third technique is to unroll awaits

a certain number of times [27, 37, 52, 54], which limits the explo-

ration to a finite set of executions. Bounded loop unrolling produces

(wasteful) executions in which each iteration of an await reads the

x = 0;

𝑇1 𝑇2

x = 1;
// while (x == 1);

assume (x != 1);

Figure 7: Using assume to model awaits

same values. These executions seem at first glance stagnant; how-

ever, they may not be stagnant, because that would require that

the reason for reading the same value over and over is that there

is no other value that could be read, and that no such value will

be produced by other threads in the future. In a finite execution,

threads are allowed to read from the same variable arbitrarily often

even in the presence of a more up-to-date value. Thus the wasteful

executions generated by bounded loop unrolling are no indication

of non-termination.

If the number of unrolled iterations is chosen sufficiently large,

then every non-wasteful execution will be explored, and thus 1) no

safety bugs are hidden by sufficiently large bounded loop unrolling,

and 2) if one checks for each generated execution whether it is

stagnant, one can use bounded loop unrolling to decide termina-

tion. However, many other redundant (i.e., wasteful) executions

will also be explored, resulting in sometimes drastic performance

degradation (see Table 3 on Page 9, which compares the verification

times of AMC, which only generates non-wasteful executions, and

GenMC, which uses bounded loop unrolling with the minimal loop

bound that is sufficient to verify safety). Finally, using bounded

loop unrolling requires finding such a sufficiently large bound, ei-

ther by the user or by some advanced automated technique; simply

restricting exploration to non-wasteful executions does not require

that extra effort.

Spin-assume transformation. The fourth technique is to re-

duce awaits to their final successful iteration [12, 54] using assume

directives, similar to how purity [33] can be used for safety proofs.

This restricts exploration to a strict subset of the executions that

are non-wasteful. Unfortunately, this may eliminate all stagnant

executions from the exploration. For example, consider the pro-

gram in Fig. 7. After 𝑇1 terminates, 𝑇2 can on WMMs read either

the stale value x = 0 or the up-to-date value x = 1 produced by

𝑇1. With the assume directives, only the former execution will be

generated as the latter does not satisfy the assumption, but the

latter execution, which is a possible execution on WMMs and not

wasteful, is stagnant. In other words, this technique hides bugs that

cause await termination violations.

5 EVALUATION

We now evaluate different aspects of VSync: (1) Is the AT detection

offered by AMC relevant in practice? (2) How does AMC compare

to state-of-the-art model checkers for WMM? (3) How effective

and efficient is the ALR barrier optimization? (4) Are optimized

synchronization primitives faster than their unoptimized counter-

parts? For details of the setup and more detailed results, we refer

to our technical report [77].

536

ASPLOS ’21, April 19ś23, 2021, Virtual, USA J. Oberhauser, R. Chehab, D. Behrens, M. Fu, A. Paolillo, L. Oberhauser, K. Bhat, Y. Wen, H. Chen, J. Kim, V. Vafeiadis

Table 2: Synchronization primitives evaluated with VSync. Complexity: lines of code (LoC) at the LLVM-IR level, number of

await loops (#A), and number of barriers (#B) including atomics operations and fences. Verification time: time needed to verify

a correct combination of the lock. Requires AT detection: primitives that may hang if barriers are too relaxed; AMC is capable

of detecting it. Optimization time: time of running LR and ALR.

Synchronization

Primitive

Barrier modes after Requires
AT

detection?

Verification Optimization
Complexity optimization time (s) time (s)

LoC #A #B sc acq rel rlx AMC GenMC LR ALR

CLH lock[40] 500 1 4 1 1 1 1 0.04 0.28 0.49 0.62
ArrayQ lock[40] 456 1 4 1 1 1 1 0.05 0.27 0.50 0.64
Ticketlock[2] 416 1 4 0 1 1 2 0.12 1.04 0.74 0.61
Semaphore 504 2 6 0 2 2 2 0.26 0.82 2.02 1.11
CertiKOS MCS[39] 954 2 9 2 1 1 5 ✓ 1.01 59.24 8.45 2.90
TWA lock[28] 581 2 10 0 4 2 4 ✓ 1.26 12.50 14.04 2.79
MCS lock[40, 70] 616 2 10 1 2 3 4 ✓ 1.57 69.95 15.40 2.95
CAS lock 431 1 3 0 1 1 1 6.73 99.01 21.14 7.43
RW lock 676 4 10 0 2 2 6 4.64 45.53 39.38 6.38
TTAS lock[40] 394 1 3 0 1 1 1 14.80 567.63 45.91 15.76
c-TKT-MCS[30] 979 4 27 1 4 6 16 ✓ 4.92 138.08 126.03 10.32
3-state mutex[31] 603 1 9 0 3 3 3 ✓ 28.30 127.95 163.12 30.62
rec. CAS lock 472 1 4 0 1 1 2 45.03 585.24 190.40 47.48
c-MCS-TWA 1140 4 31 1 6 7 17 ✓ 14.56 323.63 433.61 61.36
c-TTAS-MCS[30] 1017 4 26 1 4 6 15 ✓ 29.19 957.13 765.13 40.97
HCLH lock[40, 67] 907 2 12 2 4 1 5 344.26 9900.87 1891.42 464.93
qspinlock[25] 1160 5 26 1 7 2 16 ✓ 501.71 17116.62 8732.68 675.11
musl mutex[7] 683 1 14 0 3 2 9 ✓ 11936.16 74530.00 56901.40 12373.45

Synchronization primitives. We have applied VSync on sev-

eral synchronization primitives from the literature and open source

projects, listed in Table 2. The selection contains three groups of

primitives: spinlocks, from simple TTAS lock to complex NUMA-

aware cohort locks such as c-TKT-MCS [30] and Linux qspinlock [25];

2 futex-basedmutexes, one being the algorithm implemented in

musl libc [7]; 2 reader-writer locks, one unfair (Semaphore) and

one writer-preferring implementation (RW lock). We also introduce

a new cohort lock, c-MCS-TWA, to exercise the ALR optimization

with a complex algorithm combination. In Table 2, LoC refers to

the numbers of lines of LLVM-IR code. We report the results with

𝑁 = 3 threads (cf. ğ2.2) for all synchronization primitives ś VSync

finds the same optimizations with 𝑁 = 4.

Implementation.We developed AMC in C++ as an extension to

GenMC [54], supporting VSync and C11 atomics. Our experiments

employ the IMM memory model of GenMC. We built our ALR

optimizer and the tools around it in Golang.

5.1 On the Necessity of AT Detection

The column “Requires AT detection" in Table 2 marks synchroniza-

tion primitives for which we found overly-relaxed barrier combina-

tions that cause hangs, i.e., executions with non-terminating await

loops. Techniques such as loop unrolling and spin-assume transfor-

mation (ğ4.4) limit how often await loops iterate. Above this limit,

the execution is considered correct even though it hangs on real

hardware. In contrast, AMC detects such executions as stagnant,

properly identifying the barrier combination as overly relaxed.

We emphasize that await termination (AT) detection is crucial

for correct optimization. With a model checker that cannot detect

AT, automatic barrier optimization invariably over-relaxes barriers,

causing several primitives to hang. We experienced this firsthand

when we used GenMC.

Note that we have not exhaustively checked all barrier combina-

tions looking for overly-relaxed combinations that trigger hangs.

Therefore, non-marked synchronization primitives are not guaran-

teed to terminate for any barrier combination.

5.2 Verification Performance

Although no other WMM model checkers can verify AT, we com-

pare the verification time of AMC and other tools, such as GenMC.

Our experiments run on aWorkstation with a 12-core Intel XeonW-

2133 at 3.60GHz and 16GB RAM. Table 2 (Verification time) shows

the time taken to verify a correct barrier combination for each

synchronization primitive.

AMC verifies the primitives up to two orders of magnitude faster

than GenMC, e.g., 501s versus 17116s for qspinlock. The reason for

the massive difference is that AMC explores no wasteful executions,

whereas GenMC unrolls await loops as often as the selected limit,

even if the values read in each iteration of the loop have not changed.

For these experiments, we selected an unroll limit of 4, which is

the smallest number that avoids hiding safety bugs. With smaller

unroll values, loops bounded by the thread number 𝑁 = 3 are not

fully executed, e.g., in initialization loops.

Note that the verification of musl mutex took considerably longer

than for other synchronization primitives ś more than 3 hours

with AMC and more than 20 hours with GenMC. For example, in

contrast to the 3-state mutex, musl mutex has an additional counter

for waiters, which is incremented and decremented every time a

thread fails to acquire the mutex. The multiple orders in which this

537

VSync: Push-Button Verification and Optimization for Synchronization Primitives on Weak Memory Models ASPLOS ’21, April 19ś23, 2021, Virtual, USA

Table 3: Speedups of VSync-optimized synchronization primitives over their sc-only variants, evaluated with micro-

benchmarks (see Section 5.4.1). For each synchronization primitive, aggregated values are reported (max, min, median, mean,

and standard deviation), and then more detailed results, per number of threads, are provided. For each ł𝑡 thr.ž column, the

reported values corresponds to 𝑇𝑜

𝑇𝑠
− 1, where𝑇𝑜 is median throughput of VSync-optimized and𝑇𝑠 is the median throughput of

sc-only variants. Medians are computed over 5 runs with 𝑡 threads, each run lasting for 30 seconds. Missing values (ł-ž in the

table) corresponds to unstable results, filtered-out of the final results.

Synchronization Aggregated speedups (%) Speedups of median throughput per thread count (%)
Primitive max min median mean std 1 thr. 2 thr. 4 thr. 8 thr. 16 thr. 23 thr. 31 thr. 63 thr. 95 thr. 127 thr.

CLH lock[40] 33 -1 11 12 9 33 15 16 7 5 6 15 10 13 -1
ArrayQ lock[40] 26 14 19 20 4 19 21 18 26 23 17 16 14 19 23
Ticketlock[2] 16 -6 0 1 6 5 -2 0 -1 0 0 -2 -6 0 16
Semaphore 11 -9 0 0 6 11 -1 - 0 5 0 0 -6 -9 -
CertiKOS MCS[39] 74 1 7 15 22 74 12 8 16 21 3 5 2 6 1
TWA lock[28] 34 -4 -1 3 11 34 -3 -2 0 -2 -3 -4 1 3 3
MCS lock[40, 70] 78 -3 0 11 25 78 28 12 -1 0 -1 0 -3 0 -3
CAS lock 5 -6 -1 -1 3 5 -1 - -6 0 -1 0 -2 - -
RW lock 55 -41 -3 -1 29 30 -41 - 55 9 -3 -3 -27 -15 -11
TTAS lock[40] 9 -11 -2 -1 6 9 -2 - -2 -1 -3 -3 2 -11 -
c-TKT-MCS[30] 63 5 28 32 20 63 17 5 13 29 41 47 18 27 57
rec. CAS lock 8 -2 0 1 4 8 -1 6 -2 -1 -2 0 2 - -
c-MCS-TWA 61 -7 -1 4 20 61 -6 1 -3 -2 -1 -7 -1 2 -5
c-TTAS-MCS[30] 54 6 20 27 16 54 14 6 13 31 42 - 19 20 38
HCLH lock[40, 67] 30 -8 1 5 11 30 15 7 4 3 0 0 -1 -8 0
qspinlock[25] 24 -15 19 12 13 24 11 5 -6 -15 23 19 20 19 19

counter is modified by the waiting threads leads to an exponential

explosion in the number of executions.

For completeness, we also tried other model checkers for WMMs.

RMEM [81] could not finish any of the primitives using the binary

code directly. It verified the semaphore implementation rewritten in

pseudo-assembly in roughly two days. Surprisingly, Nidhugg [10]

supports neither atomic_cmpxchg nor other atomic read-modify-

write (RMW) operations onARM and PowermemorymodelsÐthese

operations are essential for any practical synchronization primitive.

Finally, Power2SC [12] cannot translate our client code and crashes.

5.3 Optimizer Performance

We now evaluate the optimizer performance and the effectiveness

of adaptive speculation. The optimizer employs AMC underneath.

Table 2 (Optimization time) shows the time LR and ALR algorithms

take to find a correct andmaximally-relaxed barrier combination for

each synchronization primitive. Except for already very fast cases

(taking less than 1s), optimization time is greatly improved; this is

especially noticeable for the qspinlock, which is reduced from 2.4

hours with LR to 11minutes with ALR. In fact, the optimization time

of ALR is dominated by the final verification: out of the total 657s

for qspinlock, about 500s are spent for the final, non-speculative

check (see AMC in Verification time column of Table 2).

5.4 Optimized Code Speedup

We now compare the performance of sc implementations of the

synchronization primitives with their counterparts optimized with

VSync. Our goal is to show the speedup a non-expert can see when

implementing a primitive following the literature. In ğ6, we also

compare expert-optimized implementations from open-source code.

5.4.1 Microbenchmark. We start with a microbenchmark: each

thread repeatedly acquires a (writer) lock, increments a shared

counter, and releases the lock.

Setup.We experiment on a 128-core HiSilicon Kunpeng 920 with

2 sockets, 4 NUMA nodes (ARMv8), running Ubuntu 18.04 LTS ś

similar results can be produced in openEuler 20.09 [9]. We vary the

number of threads from 1 to 127, run each experiment for a fixed

period of time (30 seconds) and measure the throughput (critical

sections per second). We run the experiments 5 times to ensure the

stability of the results (for each case, we pick the median of these

repeated runs). The benchmark runs as a Linux kernel module. We

compare two variants of each primitive: an sc-only variant, and a

VSync-optimized variant with barriers as shown in Table 2 (Barriers

after optimization). We define speedup as 𝑇𝑜

𝑇𝑠
−1, where𝑇𝑜 is median

throughput of VSync-optimized and 𝑇𝑠 is the median throughput

of sc-only variants, respectively.

Results. Table 3 shows speedups for each synchronization prim-

itive. The minimum (worst-case), the maximum (best-case), the

mean and the median speedups are reported, together with detailed

median speedups for each tested contention level (i.e., number of

threads). The throughput improved by up to 77.60% and on an aver-

age 8.57%. Perhaps surprisingly, in some isolated cases performance

is not improved or even degrades (down to -40.57%). However, in

61.00% of cases spanning different levels of contention uniformly,

speedup is positive and between 0.05%-77.60%. Our preliminary

investigations reveal that degradation may occur due to a interplay

between caches and exclusive accesses (e.g., for atomic_get_add):

if threads become too optimized, a thread currently holding a cache

line can repeatedly invalidate exclusive accesses of other threads,

resulting in starvation and performance degradation. Degradation

may also occur due to speculative execution: with sc-barriers, the

execution stops when a conditional branch cannot be resolved due

538

ASPLOS ’21, April 19ś23, 2021, Virtual, USA J. Oberhauser, R. Chehab, D. Behrens, M. Fu, A. Paolillo, L. Oberhauser, K. Bhat, Y. Wen, H. Chen, J. Kim, V. Vafeiadis

Arra
yQ

 lo
ck

qsp
inlo

ck

HCLH
 lo

ck

c-T
KT

-M
CS

RW lo
ck

TW
A lo

ck

CLH
 lo

ck

musl
 m

ute
x

Tic
ket

loc
k

0

5

10

15

sp
ee

du
p

(%
)

Contention level
None - 1 thread
Low - 8 threads
Mid - 32 threads
High - 64 threads

Figure 8: Speedup of VSync-optimized synchronization

primitives on Kyoto Cabinet, varying contention level.

to a slow read operation, but without the barriers, the incorrect

branch may be executed speculatively, leading to additional cache

traffic. Finally, we observe that most of the best speedups are ob-

tained with few threads. The benefits of barrier optimization tend

to disappear when increasing the contention of the lock.

5.4.2 Real-WorldWorkload. We evaluate the effect of barrier-mode

optimization on Kyoto Cabinet [58], an in-memory key-value data-

base. This database has a large synchronization overhead from a

global reader-writer lock [29].

Setup. We replace pthread_mutex and pthread_rwlock with

VSync-optimized and sc-only variants of our synchronization prim-

itives from Table 2 using LD_PRELOAD. Experiments run a workload

with 20% of writes for 30 seconds with different contention levels.

We performed the experiments on the Kunpeng 920 server.

Results. Figure 8 shows the speedup of barrier relaxation for

selected synchronization primitives at different contention levels.

Overall, VSync-optimized variants outperform sc-only counter-

parts in most configurations, confirming the assumption that real-

world applications are also affected by overconstrained barriers.

This is most noticeable with the ArrayQ lock, which shows up to

17.5% improvement. Some of the locks such as musl mutex and CLH

lock show no improvement with no contention. Only few barriers in

the fast path of these primitives can be optimized. For Ticketlock,

barrier optimization has an impact of less than 1%; for musl mutex

and RW lock, less than 2%. Caching effects or thread execution

noise seem to overshadow any optimization effect.

6 FINDINGS FROM USING VSYNC

6.1 Barrier Bug in seL4’s CLH Lock

VSync detected a subtle bug in the (unverified) CLH big kernel lock

of seL4. The maintainers confirmed the bug and merged our fix [8].

The relevant fragment of code is shown in Fig. 9 together with the

execution order that leads to the bug. In this example, 𝑇1 is about

to enter the critical section and locks a node (v = 1) to block the

next arriving thread. 𝑇2 is next in line, waiting first for the node

to be enqueued (by q = &v) and then for the node to be released

again by 𝑇1 (v = 0). However, in the execution order shown in the

comments in Fig. 9, 𝑇1 enqueues its node (step#1) before locking it

(which only happens in step#4).𝑇2 sees the enqueued node (step#2)

v = 0, oldv = 0, q = &oldv, p = 0;

𝑇1 𝑇2

v = 1; // step#4

q = &v; // step#1

// CS

v = 0; // step#5

p = q; // step#2

while

(*p == 1); // step#3

// CS

Figure 9: Simplified CLH code.

and enters the critical section (step#3), since it reads *p = v = 0. 𝑇1
follows it into the critical section after locking its node (step#4),

leading to a mutual exclusion violation. This is due to a missing rel

barrier while enqueueing, which on ARM ensures that enqueueing

(q=&v) becomes visible after the node is locked (v=1). We reproduced

this bug on HiKey 960 and Kunpeng 920 platforms.

6.2 Challenges of MCS Locks on WMMs

MCS lock is awell-known algorithm, present in text books (e.g., [40]),

and widely used in the industry. We compare several implemen-

tations to illustrate the potentials of VSync-optimization, namely,

providing similar performance as expert-optimization while guar-

anteeing the absence of barrier bugs.

Performance comparison. Figure 10 compares the performance

of two expert-optimized MCS lock implementations, DPDK [36]

and Concurrency Kit (ck) [16], with two VSync-optimized imple-

mentations, CertiKOS [39] and our own (from Table 2). The figure

reports the throughput of the kernel-level microbenchmark (ğ5.4.1)

on the Kunpeng 920 server.

CertiKOS MCS lock was implemented for x86 [5] and ported to

WMM using VSync. Even with optimized barriers, its performance

is worse than the other three ś in some cases a third of the perfor-

mance ś because it only implements the MCS lock slowpath case,

which simplifies their verification but incurs severe performance

degradation. DPDK and ck implementations are rather similar and

mostly employ fences (i.e., explicit barriers), which is a common

technique for x86, but can be expensive on ARMv8 [62]. Our MCS

lock implementation follows the same implementation pattern but

1
0

10

20

30

2
0

2

4

4
0

1

2

3

4

8
0

1

2

3

4

16
0

1

2

3

23
0

1

2

3

31
0

1

2

3

63
0

1

2

95
0.0

0.5

1.0

1.5

127
0.0

0.5

1.0

th
ro

ug
hp

ut
 (M

.it
er

/s
)

threads

CertiKOS ck DPDK own impl.

Figure 10: Throughput of MCS lock implementations vary-

ing number of threads with kernel-level microbenchmark.

539

VSync: Push-Button Verification and Optimization for Synchronization Primitives on Weak Memory Models ASPLOS ’21, April 19ś23, 2021, Virtual, USA

1 rte_mcslock_lock(rte_mcslock_t **msl, rte_mcslock_t *me) {

2 __atomic_store_n(&me->locked, 1, __ATOMIC_RELAXED);

3 __atomic_store_n(&me->next, NULL, __ATOMIC_RELAXED);

4 prev = __atomic_exchange_n(msl, me, __ATOMIC_SEQ_CST);

5 if (prev == NULL)

6 return;

7 __atomic_store_n(&prev->next, me, __ATOMIC_RELAXED);

8 __atomic_thread_fence(__ATOMIC_SEQ_CST);

9 while (__atomic_load_n(&me->locked, __ATOMIC_ACQUIRE));

10 }

11

12 rte_mcslock_unlock(rte_mcslock_t **msl, rte_mcslock_t *me) {

13 if (__atomic_load_n(&me->next, __ATOMIC_RELAXED) == NULL) {

14 // **ignore this branch**

15 }

16 /* Pass lock to next waiter. */

17 __atomic_store_n(&me->next->locked, 0, __ATOMIC_RELEASE);

18 }

Figure 11: Simplified DPDKMCS lock with bug. The write in

Line 7 should have an __ATOMIC_RELEASE barrier instead.

relies on implicit barriers; it has similar performance as the expert-

optimized ones ś sometimes even higher. The difference can be

partially attributed to the barrier selection, but other aspects such

as data and code cacheline alignment also play an important role.

One can only expect VSync-optimized implementations to perform

similarly as expert-optimized ones if other implementation factors

do not hamper the performance.

Bugs. We also found bugs in two MCS implementations: First, a

bug causing mutual exclusion violations was introduced in the MCS

lock implementation of an internal Huawei product while porting

it from x86 to ARM. The engineers had added several barriers to

the code trying to enforce the right ordering of instructions. Nev-

ertheless, VSync identified a missing acq barrier before returning

from the lock’s acquire function. Moreover, VSync identified two

of the barriers introduced by the engineers as redundant.

Second, in the expert-optimized DPDK MCS lock, VSync uncov-

ered a scenario similar to Fig. 1, in which 𝑇1 fails to acquire the

lock and 𝑇2 is about to release the lock. Due to a misplaced bar-

rier, 𝑇1 may miss 𝑇2’s update of the locked field and spin forever

waiting for locked to become 0. Consider the simplified code in

Fig. 11.𝑇1 enters rte_mcslock_lock, initializes locked to 1 (Line 2)

and exchanges the tail of the queue (Line 4). Afterwards, 𝑇1 sets

prev->next to its node (Line 7). Note that prev points to𝑇2’s node

since𝑇2 holds the lock. Next,𝑇2 enters rte_mcslock_unlock, reads

me->next pointing to 𝑇1’s node and sets locked to 0 (Line 17). Un-

fortunately, the write of Line 17 may be overwritten by Line 2,

causing 𝑇1 to hang at Line 9. The lost update can happen because

Lines 2 and 7 can be reordered in spite of the exchange between

them having an sc barrier (Line 4).

Figure 12 illustrates how this reorder occurs in pseudo-assembly.

The exchange operation (as well as any read-modify-write opera-

tion) can be implemented with load-exclusive/store-exclusive. Since

the exchange operation has an sc barrier, its implementation has an

acq barrier in the load-exclusive (the A in LDAXR) and a rel barrier

in the store-exclusive (the L in STLXR). The reordering A is possible

because the acq barrier does not stop preceding stores from taking

effect after it, and the rel barrier does not stop succeeding stores

STR #1,[&me->locked]

LDAXR prev,[msl]

STLXR me,[msl]

STR me,[&prev->next]

Intended order

LDAXR prev,[msl]

STR #1,[&me->locked]

STR me,[&prev->next]

STLXR me,[msl]

Reordering A

LDAXR prev,[msl]

STR me,[&prev->next]

STR #1,[&me->locked]

STLXR me,[msl]

Reordering B

L4

L2

L7

L7

L2

Figure 12: Bug manifestation in DPDK MCS lock (pseudo-

assembly for ARMv8).

from taking effect before it. The reordering B is possible because

both stores have rlx mode.

VSync suggests to add a rel barrier to the write of Line 7, which

makes reordering B impossible. The DPDK maintainers confirmed

the bug and merged our patch [4].

6.3 Applying VSync to Linux’s qspinlock

Over the course of over two years experts repeatedly optimized bar-

riers in the qspinlock [26, 63, 90] culminating in version 5.6 [65]. We

rolled back these optimizations to the partially optimized version

4.4 [64]. In order to isolate the performance impact of barriers, we

applied all optimizations unrelated to barriers from 5.6 to 4.4, then

we ported it to VSync. VSync recommended barrier modes similar

to those used by the experts (see Table 4) in roughly 11 minutes

ś in contrast, the expert optimization took several release cycles.

We cannot verify that 5.6 is correct because currently VSync does

not support LKMM, the memory model used in Linux. We expect

that VSync extended with an LKMM module would produce the

same barriers as in 5.6 ś we leave such extensions as future work.

Figure 13 compares the throughput of version 4.4 of qspinlock, the

one optimized by experts (5.6) and one automatically optimized.

VSync-optimized qspinlock performs up to 9% faster than version

4.4 and on par with version 5.6 (less than 1% difference).

6.4 Optimizing musl’s Mutual Exclusion Lock

We next considered musl [7], a fast and lightweight C library. We

applied VSync to the pthread_mutex implementation of the lat-

est musl version (1.2.0). The implementation is overly cautious: it

contains nine barriers in sc-mode sprayed around the atomic incre-

ments and CAS operations. VSync optimizes the nine sc barriers

into two acq and one rel, fully relaxing the remainder six. Notwith-

standing, Fig. 13 shows negligible performance differences when

running Kyoto Cabinet. The time needed to park and awake threads

in the kernel hides any optimization gains.

Specifically, the musl mutex spins for a fixed number of itera-

tions in userspace; if the lock does not become available in that

time, the mutex traps into the kernel. The optimized barriers can

Table 4: Barrier optimization results for Linux’s qspinlock.

Version acq rel sc Time Correctness

Linux 4.4[64] 3 6 6 2015/09/11 Not verified
Linux 4.5[63] 6 2 1 2015/11/09 Barrier bug, fixed in [26]
Linux 4.8[90] 6 3 0 2016/06/03 Barrier bug, fixed in [26]
Linux 4.16[26] 6 4 0 2018/02/13 Not verified
Linux 5.6[65] 6 2 1 2020/01/07 Not verified
VSync 7 2 1 11 minutes VSync-verified

540

ASPLOS ’21, April 19ś23, 2021, Virtual, USA J. Oberhauser, R. Chehab, D. Behrens, M. Fu, A. Paolillo, L. Oberhauser, K. Bhat, Y. Wen, H. Chen, J. Kim, V. Vafeiadis

14 8 16 24 32 48 64
threads

0

10

20

30

th
ro

ug
hp

ut
 (k

.o
ps

/s
)

0%

-1%
+3% +5% +6%

+6%

+11%
+9%

Linux qspinlock

VSync
Linux 4.4
Linux 5.6

14 8 16 24 32 48 64
threads

0

10

20

30
0%

0%
-1%

-4% +1%
+1%

-1% 0%

musl mutex

VSync
musl 1.2.0

Figure 13: Kyoto Cabinet with different versions of Linux

qspinlock and musl mutex. The annotation over the points

represent the speedup of VSync-optimized variants com-

pared to Linux 4.4 and musl 1.2.0 versions, respectively.

cause the fixed number of spin loop iterations to pass more quickly.

Consequently, the optimized mutex traps into the kernel earlier

and misses the lock more frequently, and throughput degrades.

This shows that optimizing barriers does not always provide the

expected improvements for the application. For the sake of experi-

ment, we also compared the performance without thread parking

(mutexes stay and spin in usermode); in this comparison, the opti-

mization slightly improved performance on the Kyoto Cabinet by

1-3% for all thread number configurations.

6.5 Bug in NUMA-Aware Readers-Writer Lock

We conclude our findings with a bug that VSync detected in the

NUMA-aware readers-writer lock from Kashyap et al [49]. Their

implementation fails to provide exclusivity for writers on ARM

because the lock function of readers uses only rlx operations (see

Line 222 of cmcsmcsrw.c [84]). This issue is another example of the

difficulty of porting from x86 to ARM. VSync helps with such port-

ing by hiding this complexity and returning verified and portable

code with high performance.

7 FURTHER RELATED WORK

Verification of systems software. Many formal verification ef-

forts such as Hyperkernel [73], Serval [72], or CVM [78] consider

only non-concurrent software, but can be easily ported to multi-

processors with WMMs if correct big locks were provided which

allow sequential reasoning in the critical sections. Similarly, verified

systems software like the seL4 microkernel [51] and concurrent

file systems [22, 92] exclude synchronization primitives as external

parts to be verified independently. If this is not done, it leaves a

verification gap leading potentially to bugs in a formally verified

system, such as the mutual exclusion violation due to the overly-

relaxed barrier in the seL4 big kernel lock [79]. VSync closes this

gap, and thus complements the verification of these systems.

Other formal verification projects such as CertiKOS [39], Verisoft

XT [19], and Armada [66] have also formally verified synchroniza-

tion primitives, either by manual Coq proofs [50] or by automatic

formal verifiers [41, 66] with some manual assistance. These ver-

ification efforts are considerably more general as they verify the

Table 5: Model checking for concurrent programs.

Model Checking

Technique

SeqCst WMM

safety AT safety AT

Stateful [20, 42, 60, 61, 69, 81, 91] ✓ ✓ not scalable

Stateless [10, 13, 14, 27, 43, 52, 54ś56, 71] ✓ ✗ ✓ ✗

Our AMC ✓ ✓ ✓ ✓

correctness of the locks under arbitrary client code, while we verify

the locks with a specific client. This can potentially cause issues

if the specific client is not general enough, e.g., has insufficiently

many threads. In contrast to our work, the previously mentioned

verification took considerable annotation and proof effort, making

it infeasible for today’s industrial environments. Our effort is fully

automatic; verifying, e.g., the qspinlock takes 11 minutes of wall-

clock time and little human effort. Furthermore, existing work does

not consider WMMs beyond x86, resulting in suboptimal barriers.

Model checking concurrent programs.A summary of existing

model checkers is given in Table 5. Stateful model checkers can

tackle programs with awaits but do not scale to WMMs due to state

space explosion. For example, they store every possible order in

which operations execute and propagate between cores. Initially,

we attempted to verify synchronization primitives with RMEM [81],

a stateful model checker for WMMs. Even for simple locks, verifi-

cation took multiple days. We then switched to the stateless model

checker GenMC [54, 56], which with appropriately chosen loop

unroll bounds verifies the same locks within seconds. As mentioned

before, stateless model checkers cannot decide termination, result-

ing in hangs of “verifiedž locks on real hardware. AMC solves this

and can decide termination of awaits while mitigating the state

space explosion problem.

Automatic barrier optimization. The automatic optimization

(or placement) of barriers is a challenging and promising area of

research. Prior efforts [17, 24, 32, 76, 88] focus on the barriers nec-

essary to guarantee a stronger memory model, e.g., to ensure that

the program has only sequentially consistent behaviors. In con-

trast, we deduce the barriers necessary to make the code correct.

Besides supporting implicit barriers, the advantage of our approach

is that it allows much more relaxed barriers, e.g., if relaxing some

barrier introduces non-sequentially consistent behaviors that do

not violate mutual exclusion or await termination.

Notwithstanding, model checking approaches such as ours may

profit from so called robustness theorems (e.g., [24]), which state

that certain barrier placements are sufficient for preserving the

stronger memory model; these theorems sometimes suggest thread-

local conservative heuristics for barrier placement. While our work

requires the complete analysis of the possible interactions of threads

and is therefore not scalable to large software systems, such thread-

local heuristics, or using static over-approximation of program

executions [17], are scalable to large code bases, at the cost of

introducing more barriers than necessary to preserve the stronger

memory model (e.g., [76]).

541

VSync: Push-Button Verification and Optimization for Synchronization Primitives on Weak Memory Models ASPLOS ’21, April 19ś23, 2021, Virtual, USA

8 CONCLUSION AND FUTUREWORK

Optimization of synchronization primitives on WMMs is not a task

that should be left to humans. Despite their considerable effort,

experts miss optimization opportunities and sometimes even in-

troduce subtle bugs. This is evidenced by the three barrier bugs in

code optimized by experts for WMMs.

The automated approach of VSync produces efficient barriers

and no bugs. To achieve this, we developed a method to detect non-

terminating awaits that can be adopted by stateless model checkers.

This method can be applied to more than just synchronization

primitives. As future work, we would like to apply VSync to the

optimization and verification of lock-free and other concurrent data

structures.

ACKNOWLEDGMENTS

We sincerely thank our shepherd Caroline Trippel and our anony-

mous reviewers for their insightful comments and suggestions. We

also thank Jitang Lei for suggesting the MCS lock in the internal

Huawei product and for supporting us throughout the project. Fi-

nally, we thank our colleagues of Huawei DRC and OS Kernel lab

for reviewing the draft of this work.

A ARTIFACT APPENDIX

A.1 Abstract

VSync is a framework that allows users to verify and optimize syn-

chronization primitives on WMM (such as ARMv8). It consists of a

model checker (AMC), an optimizer (ALR) and a library of atomic

operations (VSync-atomics). The main results of the paper are

the detection of bugs in existing implementations of synchroniza-

tion primitives (ğ6) and the verification and optimization of several

synchronization primitives (Table 2), including the performance

of the model checker (verification time of GenMC versus AMC)

and of the optimizer (optimization time of ALR versus LR). The

secondary results are the performance experiments comparing

several synchronization primitives optimized (and not optimized)

with VSync. The performance experiments include Table 3 as well

as Figures 8, 10 and 13. The artifact archive groups the benchmarks

according to these two sets of evaluations: main results and perfor-

mance experiments.

All the evaluations run preferably on Ubuntu 18.04. The main

results can be reproduced on any x86_64 workstation with 16GB

of RAM and 4 or more cores. The performance experiments require

a large ARMv8 server. Our experiments ran on a Kunpeng 920 pro-

cessor with 4 NUMA nodes and 128 cores, which is made remotely

available to the artifact reviewers.

We expect the artifact evaluation to reproduce the following

main results: (1) the detection of 3 bugs in existing synchronization

primitives; (2) the detection of await termination (AT) violations

in half of the evaluated synchronization primitives; and (3) ALR

optimization being significantly faster than LR for most synchro-

nization primitives. Moreover, we expect the performance experi-

ments to show that VSync-optimized synchronization primitives

perform similarly to expert-optimized ones, in particular, for Linux

qspinlock and musl mutex.

Required knowledge to run the artifacts are:

• Basic Linux command line (installing packages, running and

slightly modifying scripts);

• Building Docker images and running Docker containers;

• Configuring SSH hosts to access our internal server;

• Know how to change Linux kernel boot arguments.

A.2 Artifact Checklist
• Algorithm: Model checking, optimization, and synchronization

primitives (e.g., MCS lock).

• Program:Model checker, optimizer, kernel module, pthread inter-

position library, and benchmarks (e.g., Kyoto Cabinet v1.2.76) are

all included in the archive as source code.

• Compilation: Clang, LLVM, GCC, and other build tools available

in Ubuntu 18.04 packages. Golang 1.13 used from Docker image.

• Transformations: The source code of the barrier mutator is in the

archive. It is built in a Docker image (Dockerfile is also included).

• Binary: no binary included, only source files.

• Run-time environment: Ubuntu 18.04, root access and Docker.

• Hardware: The main results can be reproduced on any x86_64

workstation with 16GB RAM and 4 or more cores. The performance

experiments require a large ARMv8 server. Our experiments ran on

a Kunpeng 920 processor with 4 NUMA nodes and 128 cores. The

server is available to the artifact reviewers on demand.

• Run-time state: The performance experiments are sensitive to run-

time state. To reduce variability, scripts (requiring root access) are

provided to ensure core isolation and fix the CPU frequency.

• Execution: To avoid interference, we strongly recommend not run-

ning any other tasks simultaneously. Avoid running multiple con-

nections to the server with multiple users. Other precautions (such

as process pinning) are covered by the provided scripts. The run-

time to reproduce the paper results is between 2 and 3 days, but the

parameters can be tuned to reduce that duration.

• Metrics: The main results report AT-detection requirement (as a

Boolean) as well as verification and optimization times (in seconds).

The performance experiments report absolute throughput of different

benchmarks (iterations per second) or relative speedups.

• Output: The evaluations output an HTML file containing a rendered

Jupyter Notebook. The notebook includes the tables and figures of

the paper, reproduced with the selected dataset (either at the time

of submission, or freshly-generated datasets). Generated results

include Table 2, Table 3, Figure 8, Figure 10 and Figure 13.

• Experiments:The steps to reproduce are documented in the README

files inside the archive. Every step is automated, and changing pa-

rameters only requires slight modification in shell scripts. See ğA.6

for the maximum expected variation of results.

• How much disk space required? : Not more than 10GiB.

• How much time is needed to prepare workflow? : Approxi-

mately 2 to 3 hours to setup the machine, install the dependencies,

build the Docker image and run the scripts.

• Howmuch time is needed to complete experiments (approx-

imately)? : The main results take 48 to 72 hours to fully run, but a

smaller set of synchronization primitives can be selected. The perfor-

mance experiments take 48 hours to fully run, but shorter durations

and/or fewer repetitions can be configured.

• Publicly available? : Except for the dependencies, the source code

in the archive is closed source. We are working towards open

sourcing the library and tools in order to make the artifact publicly

accessible in the future.

• Workflow framework used? :We use custom scripts and make-

files to automate the generation of the results.

542

ASPLOS ’21, April 19ś23, 2021, Virtual, USA J. Oberhauser, R. Chehab, D. Behrens, M. Fu, A. Paolillo, L. Oberhauser, K. Bhat, Y. Wen, H. Chen, J. Kim, V. Vafeiadis

A.3 Description

A.3.1 How to Access. The artifacts for this submission are dis-

tributed to the reviewers as a password-protected zip file that can

be downloaded from Dropbox: undisclosed.

The README.md file in the root of the archive details the prepara-

tion and execution of the main results and performance experiments.

The README.html contains the same information in HTML format,

with links to other files in the archive.

A.3.2 Hardware Dependencies. The main results were performed

on aworkstation with a 6-core (12-hyperthreads) Intel XeonW-2133

at 3.60GHz and 16GB RAM.

The performance experiments were performed in the following

platform: a 128-core HiSilicon Kunpeng 920 with 2 sockets, 4 NUMA

nodes. We offered the artifact reviewers remote access to the ma-

chine we used for the evaluations of our paper.

A.3.3 Software Dependencies. The dependencies are essentially

packages that can be installed with apt on Ubuntu 18.04: clang,

LLVM, GCC, and other build tools. Docker has to be installed by

following instructions on its website. The README files inside the

archive describe how to install all the dependencies.

A.3.4 Data Sets.

• 00-submission: The dataset used to generate the tables and

figures of the first submission of the paper.

• 01-camera-ready: A fresh run of experiments ran by our-

selves before submitting the artifacts. We used this dataset to

generate the tables and figures of the camera-ready version

of the paper.

• 02-artifact-reviewer: An empty dataset for use by the

reviewer. By default, the benchmark scripts will output the

generated results in that directory.

A.4 Installation

The main results require the installation of Docker and make and

the subsequent creation of a Docker image by simply running make.

The performance experiments require mainly GCC, make and other

build essentials. For generating the plots, Python 3 and venv are

necessary. Please, see the README files inside the archive for detailed

instructions on how to prepare the artifacts and benchmarks.

A.5 Experiment Workflow

Please, see README files inside the archive for detailed instructions

on how to execute the evaluations.

Here is a high-level workflow.

(1) Generate notebook with 00-submission dataset.

(2) On x86_64 machine: reproduce main results.

(3) On ARMv8 server: reproduce performance experiments.

(4) Copy the results (CSV and DAT files) of steps 2 to 4 into the

02-artifact-reviewer dataset on the same machine.

(5) Generate notebookwith 02-artifact-reviewer dataset.

(6) Generate notebook with 01-camera-ready dataset.

(7) Compare the notebooks generated in steps 1, 5 and 6.

A.6 Evaluation and Expected Results

A.6.1 Expected Results. We expect the artifact evaluation to repro-

duce the following main results:

• the detection of 3 bugs in existing synchronization primitives

(seL4 CLH, DPDK MCS, Huawei MCS locks);

• the detection of await termination (AT) violations in half of

the evaluated synchronization primitives when barriers are

too weak (“Requires AT detectionž column in Table 2); and

• ALR optimization being significantly faster than LR for most

synchronization primitives (from 40% to 95% faster for opti-

mizations taking longer than 1 second).

Moreover, we expect the reproduction of the key result of the

performance experiments: VSync-optimized synchronization primi-

tives perform similarly to expert-optimized ones, in particular, for

Linux qspinlock (around 1% difference to version 5.6) and musl

mutex (less than 4%).

The bug results can be inspected in the generated logs as de-

scribed in the README files. All other results can be inspected in the

final HTML-rendered Jupyter Notebook.

A.6.2 Expected Variations. In the main results, we expect no differ-

ence in bug and AT-violation detection; and no significant variation

in the relation of ALR and LR optimization times.

The performance experiments are highly sensitive to the run-time

and machine specification; variations will be observed. To support

the paper claims, it is sufficient to observe that for most configu-

rations, VSync-optimized primitives are (1) more performant than

SC-only and (2) perform similarly to expert-optimized ones.

A.7 Experiment Customization

The main results can be configured to run a smaller set of synchro-

nization primitives. The performance experiments can be configured

with different duration, number of repetitions, number of cores

and NUMA topology (according to the reviewer’s machine). The

interested reviewer can implement, verify and optimize new syn-

chronization primitives by following the VSync tutorial. Please,

see README files inside the archive for detailed instructions. Such

primitive can then be evaluated using the scripts and programs

provided for the performance experiments.

A.8 Notes

Since the submission of the paper, there has been an important

bug fixed in the underlying GenMC v0.5.3; we backported it to

AMC. This bugfix results in slightly different verification and op-

timization times and a more relaxed barrier combinations in the

cohort synchronization primitives, i.e., c-MCS-TWA, c-TTAS-MCS

and c-TKT-MCS. See 01-camera-ready dataset for comparison.

REFERENCES
[1] 1999. spin_unlock optimization(i386). https://marc.info/?l=linux-kernel&m=

94318921016232&w=2.
[2] 2008. Linux Ticketlock. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/

linux.git/commit/?id=314cdbefd1fd0a7acf3780e9628465b77ea6a836.
[3] 2018. Linux-Kernel Memory Model. http://www.open-std.org/jtc1/sc22/wg21/

docs/papers/2018/p0124r6.html.
[4] 2020. Await termination violation bug fix in DPDK. http://patches.dpdk.org/

patch/75983/.
[5] 2020. CetiKOS MCS lock implementation ś source code. https://certikos.github.

io/certikos-artifact/html/mcertikos.mcslock.MMCSLockAbsIntroCSource.html.
[6] 2020. Clang: C Language Family Frontend for LLVM. https://clang.org.
[7] 2020. musl libc: an implementation of the C standard library. https://musl.libc.org.

543

https://marc.info/?l=linux-kernel&m=94318921016232&w=2
https://marc.info/?l=linux-kernel&m=94318921016232&w=2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=314cdbefd1fd0a7acf3780e9628465b77ea6a836
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=314cdbefd1fd0a7acf3780e9628465b77ea6a836
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0124r6.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0124r6.html
http://patches.dpdk.org/patch/75983/
http://patches.dpdk.org/patch/75983/
https://certikos.github.io/certikos-artifact/html/mcertikos.mcslock.MMCSLockAbsIntroCSource.html
https://certikos.github.io/certikos-artifact/html/mcertikos.mcslock.MMCSLockAbsIntroCSource.html
https://clang.org
https://musl.libc.org

VSync: Push-Button Verification and Optimization for Synchronization Primitives on Weak Memory Models ASPLOS ’21, April 19ś23, 2021, Virtual, USA

[8] 2020. Mutual exclusion bug fix in seL4. https://github.com/seL4/seL4/pull/199/
commits.

[9] 2020. openEuler. https://openeuler.org.
[10] Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson, Carl

Leonardsson, and Konstantinos Sagonas. 2017. Stateless model checking for TSO
and PSO. Acta Informatica 54, 8 (2017), 789ś818.

[11] Parosh Aziz Abdulla, Jatin Arora, Mohamed Faouzi Atig, and Shankaranarayanan
Krishna. 2019. Verification of Programs under the Release-Acquire Semantics.
In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation (Phoenix, AZ, USA) (PLDI 2019). Association for
Computing Machinery, New York, NY, USA, 1117ś1132. https://doi.org/10.1145/
3314221.3314649

[12] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, and Tuan Phong
Ngo. 2017. Context-Bounded Analysis for POWER. In Proceedings, Part II, of the
23rd International Conference on Tools and Algorithms for the Construction and
Analysis of Systems - Volume 10206. Springer-Verlag, Berlin, Heidelberg, 56ś74.
https://doi.org/10.1007/978-3-662-54580-5_4

[13] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Carl Leonardsson.
2016. Stateless model checking for POWER. In Computer Aided Verification,
Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer International Publishing,
Cham, 134ś156.

[14] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Tuan Phong Ngo.
2018. Optimal Stateless Model Checking under the Release-Acquire Semantics.
Proceedings of the ACM on Programming Languages 2, OOPSLA, Article 135 (Oct.
2018), 29 pages. https://doi.org/10.1145/3276505

[15] Sarita V. Adve and Mark D. Hill. 1990. Weak OrderingÐa New Definition. In
Proceedings of the 17th Annual International Symposium on Computer Architecture
(Seattle, Washington, USA) (ISCA ’90). Association for Computing Machinery,
New York, NY, USA, 2ś14. https://doi.org/10.1145/325164.325100

[16] Samy Al Bahra. 2015. Concurrency kit. Retrieved November 8 (2015), 2018.
https://github.com/concurrencykit/ck.

[17] Jade Alglave, Daniel Kroening, Vincent Nimal, and Daniel Poetzl. 2014. Don’t Sit
on the Fence. In Computer Aided Verification, Armin Biere and Roderick Bloem
(Eds.). Springer International Publishing, Cham, 508ś524.

[18] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Mod-
elling, Simulation, Testing, and Data Mining for Weak Memory. ACM Trans.
Program. Lang. Syst. 36, 2, Article 7 (July 2014), 74 pages. https://doi.org/10.1145/
2627752

[19] Bernhard Beckert and Michał Moskal. 2010. Deductive Verification of System
Software in the Verisoft XT Project. KI - Künstliche Intelligenz 24, 1 (2010), 57ś61.
https://doi.org/10.1007/s13218-010-0005-7

[20] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. 2007. The
Software Model Checker Blast: Applications to Software Engineering. Inter-
national Journal on Software Tools for Technology Transfer (STTT) 9, 5-6 (2007),
505ś525. https://doi.org/10.1007/s10009-007-0044-z

[21] Sebastian Burckhardt. 2007. Memory model sensitive analysis of concurrent data
types. Dissertations available from ProQuest (01 2007).

[22] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. 2019.
Verifying Concurrent, Crash-Safe Systems with Perennial. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles (Huntsville, Ontario,
Canada) (SOSP ’19). Association for Computing Machinery, New York, NY, USA,
243ś258. https://doi.org/10.1145/3341301.3359632

[23] Soham Chakraborty and Viktor Vafeiadis. 2016. Validating optimizations of
concurrent C/C++ programs. In Proceedings of the 2016 International Symposium
on Code Generation and Optimization. 216ś226.

[24] Ernie Cohen and Norbert Schirmer. 2009. A Better Reduction Theorem for Store
Buffers. CoRR abs/0909.4637 (2009). arXiv:0909.4637 http://arxiv.org/abs/0909.
4637

[25] Jonathan Corbet. 2014. locks and qspinlocks. https://lwn.net/Articles/590243/.
[26] Will Deacon. Feb 13, 2018. locking/qspinlock: Ensure node is initialized before

updating prev->next. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux.git/commit/?id=95bcade33a8a.

[27] Brian Demsky and Patrick Lam. 2015. SATCheck: SAT-directed stateless model
checking for SC and TSO. In OOPSLA 2015. ACM, New York, NY, USA, 20ś36.
https://doi.org/10.1145/2814270.2814297

[28] Dave Dice and Alex Kogan. 2019. TWA ś Ticket Locks Augmented with aWaiting
Array. In European Conference on Parallel Processing. Springer, 334ś345.

[29] Dave Dice, Alex Kogan, Yossi Lev, Timothy Merrifield, and Mark Moir. 2014.
Adaptive Integration of Hardware and Software Lock Elision Techniques. In Pro-
ceedings of the 26th ACMSymposium on Parallelism in Algorithms andArchitectures
(Prague, Czech Republic) (SPAA ’14). Association for Computing Machinery, New
York, NY, USA, 188ś197. https://doi.org/10.1145/2612669.2612696

[30] David Dice, Virendra J. Marathe, and Nir Shavit. 2015. Lock Cohorting: A General
Technique for Designing NUMA Locks. ACM Trans. Parallel Comput. 1, 2, Article
13 (Feb. 2015), 42 pages. https://doi.org/10.1145/2686884

[31] Ulrich Drepper. 2005. Futexes are tricky. Futexes are Tricky, Red Hat Inc, Japan 4
(2005).

[32] Xing Fang, Jaejin Lee, and Samuel P. Midkiff. 2003. Automatic Fence Insertion for
Shared Memory Multiprocessing. In Proceedings of the 17th Annual International
Conference on Supercomputing (San Francisco, CA, USA) (ICS ’03). Association for
Computing Machinery, New York, NY, USA, 285ś294. https://doi.org/10.1145/
782814.782854

[33] C. Flanagan, S. N. Freund, and S. Qadeer. 2005. Exploiting purity for atomicity.
IEEE Transactions on Software Engineering 31, 4 (2005), 275ś291.

[34] Cormac Flanagan and Patrice Godefroid. 2005. Dynamic partial-order reduction
for model checking software. In Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2005. ACM, 110ś121.
https://doi.org/10.1145/1040305.1040315

[35] Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc
Maranget, Will Deacon, and Peter Sewell. 2016. Modelling the ARMv8 Archi-
tecture, Operationally: Concurrency and ISA. In Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (St.
Petersburg, FL, USA) (POPL ’16). Association for Computing Machinery, New
York, NY, USA, 608ś621. https://doi.org/10.1145/2837614.2837615

[36] Linux Foundation. 2015. Data Plane Development Kit (DPDK). http://www.
dpdk.org

[37] Natalia Gavrilenko, Hernán Ponce-de León, Florian Furbach, Keijo Heljanko,
and Roland Meyer. 2019. BMC for Weak Memory Models: Relation Analysis
for Compact SMT Encodings. In International Conference on Computer Aided
Verification. Springer, 355ś365.

[38] Ronghui Gu, Zhong Shao, Hao Chen, Jieung Kim, Jérémie Koenig, Xiong-
nan (Newman) Wu, Vilhelm Sjöberg, and David Costanzo. 2019. Building
Certified Concurrent OS Kernels. Commun. ACM 62, 10 (Sept. 2019), 89ś99.
https://doi.org/10.1145/3356903

[39] Ronghui Gu, Zhong Shao, Hao Chen, XiongnanWu, Jieung Kim, Vilhelm Sjöberg,
and David Costanzo. 2016. CertiKOS: An Extensible Architecture for Building
Certified Concurrent OS Kernels. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation (Savannah, GA, USA) (OSDI’16).
USENIX Association, USA, 653ś669.

[40] Maurice Herlihy and Nir Shavit. 2011. The art of multiprocessor programming.
Morgan Kaufmann.

[41] Mark A Hillebrand and Dirk C Leinenbach. 2009. Formal verification of a reader-
writer lock implementation in C. Electronic Notes in Theoretical Computer Science
254 (2009), 123ś141.

[42] Gerard J Holzmann and William Slattery Lieberman. 1991. Design and validation
of computer protocols. Vol. 512. Prentice hall Englewood Cliffs.

[43] Alan Huang. 2016. Maximally Stateless Model Checking for Concurrent Bugs
under RelaxedMemoryModels. In Proceedings of the 38th International Conference
on Software Engineering Companion (Austin, Texas) (ICSE ’16). Association for
Computing Machinery, New York, NY, USA, 686ś688. https://doi.org/10.1145/
2889160.2891042

[44] Huawei. 2019. Huawei Unveils Industry’s Highest-Performance ARM-based
CPU. https://www.huawei.com/en/news/2019/1/huawei-unveils-highest-
performance-arm-based-cpu.

[45] ISO/IEC. 2011. Committee Draft N1570 of C11 standard.
[46] Ranjit Jhala and Rupak Majumdar. 2009. Software Model Checking. ACM Comput.

Surv. 41, 4, Article 21 (Oct. 2009), 54 pages. https://doi.org/10.1145/1592434.
1592438

[47] Bengt Jonsson. 2009. State-Space Exploration for Concurrent Algorithms under
Weak Memory Orderings: (Preliminary Version). SIGARCH Comput. Archit. News
36, 5 (June 2009), 65ś71. https://doi.org/10.1145/1556444.1556453

[48] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer.
2017. A Promising Semantics for Relaxed-Memory Concurrency. In Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages
(Paris, France) (POPL 2017). Association for Computing Machinery, New York,
NY, USA, 175ś189. https://doi.org/10.1145/3009837.3009850

[49] Sanidhya Kashyap, Irina Calciu, Xiaohe Cheng, Changwoo Min, and Taesoo Kim.
2019. Scalable and Practical Locking with Shuffling. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles (Huntsville, Ontario, Canada)
(SOSP ’19). Association for Computing Machinery, New York, NY, USA, 586ś599.
https://doi.org/10.1145/3341301.3359629

[50] Jieung Kim, Vilhelm Sjöberg, Ronghui Gu, and Zhong Shao. 2017. Safety and
liveness of MCS lockÐLayer by layer. In Asian Symposium on Programming
Languages and Systems. Springer, 273ś297.

[51] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2009. seL4: Formal
Verification of an OS Kernel. In Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles (Big Sky, Montana, USA) (SOSP ’09). Association
for Computing Machinery, New York, NY, USA, 207ś220. https://doi.org/10.
1145/1629575.1629596

[52] Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis.
2017. Effective Stateless Model Checking for C/C++ Concurrency. Proceedings of
the ACM on Programming Languages 2, POPL, Article 17 (Dec. 2017), 32 pages.
https://doi.org/10.1145/3158105

544

https://github.com/seL4/seL4/pull/199/commits
https://github.com/seL4/seL4/pull/199/commits
https://openeuler.org
https://doi.org/10.1145/3314221.3314649
https://doi.org/10.1145/3314221.3314649
https://doi.org/10.1007/978-3-662-54580-5_4
https://doi.org/10.1145/3276505
https://doi.org/10.1145/325164.325100
https://github.com/concurrencykit/ck
https://doi.org/10.1145/2627752
https://doi.org/10.1145/2627752
https://doi.org/10.1007/s13218-010-0005-7
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1145/3341301.3359632
http://arxiv.org/abs/0909.4637
http://arxiv.org/abs/0909.4637
http://arxiv.org/abs/0909.4637
https://lwn.net/Articles/590243/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=95bcade33a8a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=95bcade33a8a
https://doi.org/10.1145/2814270.2814297
https://doi.org/10.1145/2612669.2612696
https://doi.org/10.1145/2686884
https://doi.org/10.1145/782814.782854
https://doi.org/10.1145/782814.782854
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1145/2837614.2837615
http://www.dpdk.org
http://www.dpdk.org
https://doi.org/10.1145/3356903
https://doi.org/10.1145/2889160.2891042
https://doi.org/10.1145/2889160.2891042
https://www.huawei.com/en/news/2019/1/huawei-unveils-highest-performance-arm-based-cpu
https://www.huawei.com/en/news/2019/1/huawei-unveils-highest-performance-arm-based-cpu
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1145/1556444.1556453
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3341301.3359629
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/3158105

ASPLOS ’21, April 19ś23, 2021, Virtual, USA J. Oberhauser, R. Chehab, D. Behrens, M. Fu, A. Paolillo, L. Oberhauser, K. Bhat, Y. Wen, H. Chen, J. Kim, V. Vafeiadis

[53] Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019. Effective Lock
Handling in Stateless Model Checking. Proceedings of the ACM on Programming
Languages 3, OOPSLA, Article 173 (Oct. 2019), 26 pages. https://doi.org/10.1145/
3360599

[54] Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019. Model Check-
ing for Weakly Consistent Libraries. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Phoenix, AZ,
USA) (PLDI 2019). Association for Computing Machinery, New York, NY, USA,
96ś110. https://doi.org/10.1145/3314221.3314609

[55] Michalis Kokologiannakis and Konstantinos Sagonas. 2017. Stateless Model
Checking of the Linux Kernel’s Hierarchical Read-Copy-Update (Tree RCU). In
Proceedings of the 24th ACM SIGSOFT International SPIN Symposium on Model
Checking of Software (Santa Barbara, CA, USA) (SPIN 2017). Association for
Computing Machinery, New York, NY, USA, 172ś181. https://doi.org/10.1145/
3092282.3092287

[56] Michalis Kokologiannakis and Viktor Vafeiadis. 2020. HMC: Model Checking for
HardwareMemoryModels. In Proceedings of the Twenty-Fifth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(Lausanne, Switzerland) (ASPLOS ’20). Association for Computing Machinery,
New York, NY, USA, 1157ś1171. https://doi.org/10.1145/3373376.3378480

[57] Michael Kuperstein, Martin Vechev, and Eran Yahav. 2012. Automatic Inference
of Memory Fences. SIGACT News 43, 2 (June 2012), 108ś123. https://doi.org/10.
1145/2261417.2261438

[58] FAL Labs. 2011. Kyoto Cabinet: A straightforward implementation of DBM.
http://fallabs.com/kyotocabinet.

[59] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer.
2017. Repairing Sequential Consistency in C/C++11. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(Barcelona, Spain) (PLDI 2017). Association for Computing Machinery, New York,
NY, USA, 618ś632. https://doi.org/10.1145/3062341.3062352

[60] Kim G Larsen, Paul Pettersson, and Wang Yi. 1997. UPPAAL in a nutshell.
International journal on software tools for technology transfer 1, 1-2 (1997), 134ś
152.

[61] Stella Lau, Victor BF Gomes, Kayvan Memarian, Jean Pichon-Pharabod, and Peter
Sewell. 2019. Cerberus-BMC: A Principled Reference Semantics and Exploration
Tool for Concurrent and Sequential C. In International Conference on Computer
Aided Verification. Springer, 387ś397.

[62] Nian Liu, Binyu Zang, and Haibo Chen. 2020. No Barrier in the Road: A Com-
prehensive Study and Optimization of ARM Barriers. In Proceedings of the 25th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(San Diego, California) (PPoPP ’20). Association for Computing Machinery, New
York, NY, USA, 348ś361. https://doi.org/10.1145/3332466.3374535

[63] Waiman Long. Nov 10, 2015. locking/qspinlock: Use _acquire/_release() versions
of cmpxchg() & xchg(). https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux.git/commit/?id=64d816cba06c.

[64] Waiman Long and Peter Zijlstra. 2015. qspinlock code at version 4.4 of Linux
Kernel. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/
kernel/locking/qspinlock.c?h=v4.4.

[65] Waiman Long and Peter Zijlstra. 2020. qspinlock code at version 5.6 of Linux
Kernel. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/
kernel/locking/qspinlock.c?h=v5.6.

[66] Jacob R. Lorch, Yixuan Chen, Manos Kapritsos, Bryan Parno, Shaz Qadeer, Upa-
manyu Sharma, James R. Wilcox, and Xueyuan Zhao. 2020. Armada: Low-Effort
Verification of High-Performance Concurrent Programs. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation
(London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY,
USA, 197ś210. https://doi.org/10.1145/3385412.3385971

[67] Victor Luchangco, Dan Nussbaum, and Nir Shavit. 2006. A hierarchical CLH
queue lock. In European Conference on Parallel Processing. Springer, 801ś810.

[68] Sela Mador-Haim, Luc Maranget, Susmit Sarkar, Kayvan Memarian, Jade Alglave,
Scott Owens, Rajeev Alur, Milo M. K. Martin, Peter Sewell, and Derek Williams.
2012. An Axiomatic Memory Model for POWER Multiprocessors. In Computer
Aided Verification, P. Madhusudan and Sanjit A. Seshia (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 495ś512.

[69] Kenneth LMcMillan. 1993. Symbolic model checking. In Symbolic Model Checking.
Springer, 25ś60.

[70] John M. Mellor-Crummey and Michael L. Scott. 1991. Algorithms for Scalable
Synchronization on Shared-Memory Multiprocessors. ACM Trans. Comput. Syst.
9, 1 (Feb. 1991), 21ś65. https://doi.org/10.1145/103727.103729

[71] Madanlal Musuvathi and Shaz Qadeer. 2008. Fair StatelessModel Checking. In Pro-
ceedings of the 29th ACM SIGPLAN Conference on Programming Language Design
and Implementation (Tucson, AZ, USA) (PLDI ’08). Association for Computing Ma-
chinery, New York, NY, USA, 362ś371. https://doi.org/10.1145/1375581.1375625

[72] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina Torlak,
and Xi Wang. 2019. Scaling Symbolic Evaluation for Automated Verification
of Systems Code with Serval. In Proceedings of the 27th ACM Symposium on

Operating Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19). Association
for Computing Machinery, New York, NY, USA, 225ś242. https://doi.org/10.
1145/3341301.3359641

[73] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson, James Born-
holt, Emina Torlak, and Xi Wang. 2017. Hyperkernel: Push-Button Verification
of an OS Kernel. In Proceedings of the 26th Symposium on Operating Systems
Principles (Shanghai, China) (SOSP ’17). Association for Computing Machinery,
New York, NY, USA, 252ś269. https://doi.org/10.1145/3132747.3132748

[74] Tuan-Phong Ngo. 2019. Model Checking of Software Systems under Weak Memory
Models. Ph.D. Dissertation. Acta Universitatis Upsaliensis.

[75] Brian Norris and Brian Demsky. 2016. A Practical Approach for Model Checking
C/C++11 Code. ACM Trans. Program. Lang. Syst. 38, 3, Article 10 (May 2016),
51 pages. https://doi.org/10.1145/2806886

[76] Jonas Oberhauser. 2015. A Simpler Reduction Theorem for X86-TSO. In Revised
Selected Papers of the 7th International Conference on Verified Software: Theories,
Tools, and Experiments - Volume 9593 (San Francisco, CA, USA) (VSTTE 2015).
Springer-Verlag, Berlin, Heidelberg, 142ś164. https://doi.org/10.1007/978-3-319-
29613-5_9

[77] Jonas Oberhauser, Rafael Lourenco de Lima Chehab, Diogo Behrens, Ming Fu,
Antonio Paolillo, Lilith Oberhauser, Koustubha Bhat, Yuzhong Wen, Haibo Chen,
Jaeho Kim, and Viktor Vafeiadis. 2021. VSync: Push-Button Verification and
Optimization for Synchronization Primitives onWeakMemoryModels (Technical
Report). arXiv:2102.06590 [cs.LO]

[78] Wolfgang J. Paul, Christoph Baumann, Petro Lutsyk, and Sabine Schmaltz. 2016.
System Architecture - An Ordinary Engineering Discipline. Springer. https:
//doi.org/10.1007/978-3-319-43065-2

[79] Sean Peters, Adrian Danis, Kevin Elphinstone, and Gernot Heiser. 2015. For a
Microkernel, a Big Lock Is Fine. In Proceedings of the 6th Asia-Pacific Workshop
on Systems (Tokyo, Japan) (APSys ’15). Association for Computing Machinery,
New York, NY, USA, Article 3, 7 pages. https://doi.org/10.1145/2797022.2797042

[80] Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. 2019. Bridging the Gap
between Programming Languages and Hardware Weak Memory Models. Pro-
ceedings of the ACM on Programming Languages 3, POPL, Article 69 (Jan. 2019),
31 pages. https://doi.org/10.1145/3290382

[81] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and
Peter Sewell. 2017. Simplifying ARM Concurrency: Multicopy-Atomic Axiomatic
and Operational Models for ARMv8. Proceedings of the ACM on Programming
Languages 2, POPL, Article 19 (Dec. 2017), 29 pages. https://doi.org/10.1145/
3158107

[82] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Mag-
nus O. Myreen. 2010. X86-TSO: A Rigorous and Usable Programmer’s Model
for X86 Multiprocessors. Commun. ACM 53, 7 (July 2010), 89ś97. https:
//doi.org/10.1145/1785414.1785443

[83] SPARC International Inc. 1994. The SPARC architecture manual (version 9).
Prentice-Hall.

[84] Georgia Tech SS Lab. 2010. NUMA-aware Reader-Writer Implementa-
tion. https://github.com/sslab-gatech/shfllock/blob/master/benchmarks/kernel-
syncstress/locks/cmcsmcsrw.c#L222.

[85] The Guardian. 2020. Apple ditches Intel for ARM processors in Mac computers
with Big Sur. https://www.theguardian.com/technology/2020/jun/22/apple-
ditches-intel-for-arm-processors-in-big-sur-computers.

[86] Viktor Vafeiadis. 2017. Program verification under weak memory consistency
using separation logic. In International Conference on Computer Aided Verification.
Springer, 30ś46.

[87] Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin Morisset, and
Francesco Zappa Nardelli. 2015. Common Compiler Optimisations Are Invalid
in the C11 Memory Model and What We Can Do about It. In Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (Mumbai, India) (POPL ’15). Association for Computing Machinery,
New York, NY, USA, 209ś220. https://doi.org/10.1145/2676726.2676995

[88] Viktor Vafeiadis and Francesco Zappa Nardelli. 2011. Verifying Fence Elimination
Optimisations. In Static Analysis, Eran Yahav (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 146ś162.

[89] Andrew Waterman and Krste Asanović (Eds.). 2019. The RISC-V Instruction Set
Manual. https://content.riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf.
Accessed: 2020-03-06.

[90] Pan Xinhui. Jun 3, 2016. locking/qspinlock: Use atomic_sub_return_release() in
queued_spin_unlock(). https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux.git/commit/?id=ca50e426f96c.

[91] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. 1999. Model checking TLA+
specifications. In Advanced Research Working Conference on Correct Hardware
Design and Verification Methods. Springer, 54ś66.

[92] Mo Zou, Haoran Ding, Dong Du, Ming Fu, Ronghui Gu, and Haibo Chen. 2019.
Using Concurrent Relational Logic with Helpers for Verifying the AtomFS File
System. In Proceedings of the 27th ACM Symposium on Operating Systems Principles
(Huntsville, Ontario, Canada) (SOSP ’19). Association for Computing Machinery,
New York, NY, USA, 259ś274. https://doi.org/10.1145/3341301.3359644

545

https://doi.org/10.1145/3360599
https://doi.org/10.1145/3360599
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/3092282.3092287
https://doi.org/10.1145/3092282.3092287
https://doi.org/10.1145/3373376.3378480
https://doi.org/10.1145/2261417.2261438
https://doi.org/10.1145/2261417.2261438
http://fallabs.com/kyotocabinet
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3332466.3374535
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=64d816cba06c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=64d816cba06c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/locking/qspinlock.c?h=v4.4
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/locking/qspinlock.c?h=v4.4
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/locking/qspinlock.c?h=v5.6
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/locking/qspinlock.c?h=v5.6
https://doi.org/10.1145/3385412.3385971
https://doi.org/10.1145/103727.103729
https://doi.org/10.1145/1375581.1375625
https://doi.org/10.1145/3341301.3359641
https://doi.org/10.1145/3341301.3359641
https://doi.org/10.1145/3132747.3132748
https://doi.org/10.1145/2806886
https://doi.org/10.1007/978-3-319-29613-5_9
https://doi.org/10.1007/978-3-319-29613-5_9
http://arxiv.org/abs/2102.06590
https://doi.org/10.1007/978-3-319-43065-2
https://doi.org/10.1007/978-3-319-43065-2
https://doi.org/10.1145/2797022.2797042
https://doi.org/10.1145/3290382
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3158107
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
https://github.com/sslab-gatech/shfllock/blob/master/benchmarks/kernel-syncstress/locks/cmcsmcsrw.c#L222
https://github.com/sslab-gatech/shfllock/blob/master/benchmarks/kernel-syncstress/locks/cmcsmcsrw.c#L222
https://www.theguardian.com/technology/2020/jun/22/apple-ditches-intel-for-arm-processors-in-big-sur-computers
https://www.theguardian.com/technology/2020/jun/22/apple-ditches-intel-for-arm-processors-in-big-sur-computers
https://doi.org/10.1145/2676726.2676995
https://content.riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ca50e426f96c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ca50e426f96c
https://doi.org/10.1145/3341301.3359644

	Abstract
	1 Introduction
	2 Background and Overview of VSync
	2.1 Weak Memory Models
	2.2 The VSync Framework

	3 Adaptive Linear Relaxation
	4 Await Model Checking
	4.1 Applicable Domain
	4.2 Checking Termination of Await Loops
	4.3 Summary of Implementation
	4.4 Comparison to State-of-the-Art

	5 Evaluation
	5.1 On the Necessity of AT Detection
	5.2 Verification Performance
	5.3 Optimizer Performance
	5.4 Optimized Code Speedup

	6 Findings from Using VSync
	6.1 Barrier Bug in seL4's CLH Lock
	6.2 Challenges of MCS Locks on WMMs
	6.3 Applying VSync to Linux's qspinlock
	6.4 Optimizing musl's Mutual Exclusion Lock
	6.5 Bug in NUMA-Aware Readers-Writer Lock

	7 Further Related Work
	8 Conclusion and Future Work
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Checklist
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results
	A.7 Experiment Customization
	A.8 Notes

	References

