
ACCEPTOR: a model and a protocol for real-time multi-mode
applications on reconfigurable heterogeneous platforms

Joël Goossens

joel.goossens@ulb.ac.be

Université libre de Bruxelles

Brussels, Belgium

Xavier Poczekajlo

xavier.poczekajlo@ulb.ac.be

Université libre de Bruxelles

Brussels, Belgium

Antonio Paolillo

antonio.paolillo@ulb.ac.be

Université libre de Bruxelles

Brussels, Belgium

Paul Rodriguez

paul.rodriguez.lobera@pm.me

Université libre de Bruxelles

Brussels, Belgium

ABSTRACT

In this work, we consider hard real-time applications scheduled

upon heterogeneous multiprocessor platforms. The originality of

this study is to consider multi-mode real-time applications (soft-

ware aspects) and reconfigurable-heterogeneous hardware plat-

forms (composed of CPUs, GPUs, FPGAs. . .). Our approach is based

on a multi-mode protocol, for mode-dependent tasks upon reconfig-

urable hardware. The goal is to handle predictable switches between

different task sets and different hardware settings. The novelty here

is the dynamic hardware and software reconfigurability. First, we

propose a formal model of the applications and reconfigurable hard-

ware platforms. We then propose and prove correct a mode change

protocol. We propose in particular a validity test for the verification

of the timing constraints of the application —including the time

allowed to complete a mode change. We also perform a complete

evaluation. We study the theoretical complexity of the protocol, use

a simulation to evaluate the efficiency of our solution, and finally

propose a competitive analysis of our protocol to prove that it is

2-competitive.

CCS CONCEPTS

•Computer systems organization→Real-time systems;Mul-

ticore architectures.

KEYWORDS

real-time scheduling, mode change protocol, multiprocessor, recon-

figurable hardware

ACM Reference Format:

Joël Goossens, Xavier Poczekajlo, Antonio Paolillo, and Paul Rodriguez.

2019. ACCEPTOR: a model and a protocol for real-time multi-mode appli-

cations on reconfigurable heterogeneous platforms. In 27th International

Conference on Real-Time Networks and Systems (RTNS 2019), November

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

RTNS 2019, November 6–8, 2019, Toulouse, France

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7223-7/19/11. . . $15.00

https://doi.org/10.1145/3356401.3356420

6–8, 2019, Toulouse, France. ACM, New York, NY, USA, 11 pages. https:

//doi.org/10.1145/3356401.3356420

1 INTRODUCTION

The performance requirements for embedded real-time applications

are rising. Machine vision systems and intelligent vehicles are only

a few examples taken from the wide range of those demanding

applications. Several techniques are used to design those real-time

applications. One of them is to model the different functionalities

as a set of different recurrent tasks. Some applications have the

particularity to go through several states (or modes) during their

lifespans. Those modes may be for an example event-driven (the de-

tection of a specific event by the system) or time-driven (day/night

modes). Each mode may then be designed independently, with its

own set of functionalities modelled as several task sets: one for

each mode. Only one mode and its task set can be active at a time.

Executing a real-time multi-mode application requires to be able

to schedule each mode, but also to handle the transition from one

mode to another. During a transition, the tasks from the old mode

must be completed, and the tasks from the new mode must be en-

abled. The transition from one mode to another must be bounded

by a real-time constraint, defined at design time.

Dividing an application into several distinct modes improves

the schedulability analysis. Indeed, the analysis is then closer to

what will happen during the life-span of the application which

makes it more accurate. By dividing the tasks into several task sub-

sets — one for each mode, the maximal instantaneous workload is

reduced, leading to a potential reduction of the hardware require-

ments. This technique has been well studied on uni-processor and

multi-processor systems (see [20–22, 26]).

Modern hardware offers to the designer of real-time applications

the possibility to be reconfigured during run-time. Such hardware

can be reconfigured in several ways: it can be turned on and off

(to adjust the energy consumption to the current workload), or

its speed and/or functionalities. Modifying the hardware function-

alities at run-time allows to reduce the hardware requirements.

Indeed, several specialised processors working at distinct time in-

stants may be replaced by a single reconfigurable processor (any

hardware that may be used to execute tasks, and may change its

behaviour at run-time). For example, last generation FPGAs (field-

programmable gate array) offer all those possibilities. This kind of

hardware is included in new embedded processing platforms, which

https://doi.org/10.1145/3356401.3356420
https://doi.org/10.1145/3356401.3356420
https://doi.org/10.1145/3356401.3356420

RTNS 2019, November 6–8, 2019, Toulouse, France Goossens, Paolillo, Poczekajlo and Rodriguez

makes them heterogeneous in nature. For example, the Xilinx Zynq

UltraScale+™ system on chip [29] is a single die integrating several

ARM processing cores from different architectures together with

other heterogeneous components (64 bits quad-core Cortex
®
A53

cores, dual-core Cortex
®
R5 real-time cores, a Mali™-400 MP2 GPU

and an FPGA programmable logic). This processor’s block diagram

is illustrated by Figure 1.

In this paper, we propose a new approach: combining both soft-

ware and hardware reconfigurations. In this approach, each mode is

defined by a set of functionalities and a specific hardware configura-

tion adapted to those functionalities. The hardware reconfigurations

are handled during the transition from one mode to another. To the

best of our knowledge, combining both multi-mode software and

hardware reconfiguration has never been studied before. However,

fitting the hardware to the current functionalities of the applica-

tion leads to a more efficient execution (in terms of speeds, energy

consumption and/or hardware requirements).

Contributions. The key contributions of this paper are the

following:

• the — to our knowledge — first model for multi-mode appli-

cations on reconfigurable heterogeneous platforms;

• an asynchronous aperiodic mode-change protocol to sched-

ule such applications on reconfigurable multi-processor sys-

tems;

• a validity test for this protocol based on an upper-bound of

the transition duration;

• a complete evaluation through simulations, complexity and

competitive analysis of the contributions.

The remaining of the paper is organised as follows. Section 2

presents the related work. Section 3 introduces the model used in

the paper. Section 4 describes themode change protocol proposed as

a first solution to handle the transition between the different modes.

Section 5 proposes an upper-bound of the transitions duration,

when using the introduced protocol. Section 6 provides a validity

test and proves its correctness. Section 7 evaluates the protocol

through a complete evaluation using simulations for the upper-

bound efficiency, and both a complexity and competitive analysis of

the protocol. It also discusses some of the limitations of the model.

Section 8 concludes the paper.

2 RELATEDWORK

Multi-mode. A survey [26] proposes various solutions and de-

fines the main vocabulary and concepts for multi-mode applica-

tions on uni-processor systems. Concerning multi-processors, the

literature reports several multi-mode protocols which handle the

transition from one mode to another. Regarding global schedul-

ing, V. Nelis’ works include several protocols for homogeneous or

heterogeneous related multi-processors (see for instance [20–22]).

Those protocols combine different paradigms: periodic/aperiodic

and synchronous/asynchronous task systems. More recently, Shih

et al. [28] provided a schedulability analysis for global scheduling of

mode change for the imprecise computation model upon identical

multi-processors.

Concerning partitioned scheduling a short contribution by Mar-

inho et al. [19] formalises the scheduling problem and shows two

Figure 1: The Zynq UltraScale+™ EG processor block dia-

gram. EG devices feature a quad-core ARM
®
Cortex-A53

platform running up to 1.5GHz, combined with dual-core

Cortex-R5 real-time processors, a Mali-400 MP2 graph-

ics processing unit, and a 16nm FinFET+ programmable

logic [29].

counter-intuitive phenomena. Emberson et al. [9] proposed heuris-

tics to handle the mode change. Lastly, Goossens et al. [13] consider

the partitioned scheduling problem of multi-mode real-time sys-

tems upon identical multi-processors. The authors propose two

methods for handling mode changes in partitioned scheduling.

In this work we extend our previous contributions where we

introduced the study of multi-mode protocols on multi-processor

platforms, with reconfigurable hardware [12].

Schedulinguponheterogeneous platforms. Cluster-based sched-
uling —where tasks are assigned to a given set of processors called

cluster and cannot migrate to a different one, has been well-studied

for heterogeneous systems . Raravi et al. [25] propose, to the best

of our knowledge, the most efficient approach to this problem.

Reconfigurable hardware. Research concerning reconfigurable
platforms combining CPUs and FPGA elements used for real-time

systems is relatively new, as the platforms themselves are new to

the market [15].

Cornil et al. [5] assessed the research challenges to face with this

kind of platforms. Ahmad et al. [27] provided tools to optimise the

design of real-time applications running on reconfigurable devices

(with regards to different metrics such as performance and energy

consumption). Pagani et al. [24] proposed the integration of Dy-

namic Partial Reconfiguration (DPR, a technique to reconfigure an

FPGA at run-time) as part of a provided service of operating systems.

Biondi et al. [3, 4] provided several timing analyses and run-time

framework works that make use of DPR, enabling reconfigurable

heterogeneous platforms as target candidates for real-time systems.

They also provided an extensive state of the art as part of their

research paper [3]. Their approach is based on modelling the depen-

dency between heterogeneous components with self-suspending

tasks, waiting for resources to free on remote processing units.

Later, Pagani et al. [23] provided an implementation of their DPR

ACCEPTOR RTNS 2019, November 6–8, 2019, Toulouse, France

M1 M2

M3

∆2

∆3 ∆3

∆1

Figure 2: Graph transition

framework for the Linux operating system. Bini [2] presented the

Adaptive Fair Scheduler technique, that considers resource allo-

cation and provide guarantees to the application. His approach is

general enough to be applied to heterogeneous and reconfigurable

computing.

3 MODEL

In this section, we present the first contribution of our paper: the

model. To the best of our knowledge, this model is the first to com-

bine both multi-mode application model and reconfigurable plat-

form model. A multi-mode application on a reconfigurable platform

is composed of different modes Mh =< Θ̃h ,Th ,∆h >. Each mode

will execute a different task setTh (see Section 3.2) on the platform

configured in a specific way according to Θ̃h
(see Section 3.3) for

this mode. For eachmode, ∆h is the real-time constraint of the mode

change (see Section 3.1). The application is composed of µ modes

M � {M1,M2, . . . ,Mµ }, executed on a platform containing m
processors.

Two use-cases of the model are shown in Section 3.6, as examples.

All the notations introduced in this section are referenced in Table 1.

3.1 Mode transitions

The application executes at any instant amodeMh
. The activemode

may only change during a Mode Change Phase. A Mode Change

Phase is triggered when the system receives a Mode Change Re-

quest. It can only be received whenever the platform is not already

performing a Mode Change Phase. When a Mode Change Request

MCR(Mdst) occurs at tMCR, the current mode is immediately deac-

tivated (and its task set is disabled), and new mode Mdst
must be

activated (and its task set enabled) by tMCR+∆
dst

. ∆dst
is a real-time

constraint specified at design time for each mode Mh
. The Mode

Change Phase ends when the new modeMdst
is activated. Do note

that this constraint depends only from the destination modeMdst
,

independently fromMsrc
.

3.1.1 Mode Change Graph. In an application, some transitions

will never occur. The possible transitions are represented in the

Mode Change Graph G � {V,E ⊆ V
2}. The Mode Change Graph

is a directed graph, where V contains one and only one node for

each mode Mh ∈ M , and E represents all the possible transitions

from one mode to another. A Mode Change Phase from a mode

Msrc
to a mode Mdst

is possible if and only if (Msrc, Mdst) ∈ E. A
graph example is given in Fig. 2. In this example, the mode after

M2
must beM3

and notM1
because the directed edge fromM1

to

M2
is unidirectional.

3.2 Task model

3.2.1 Job. The platform executes jobs. A job Ji is defined by three

parameters (ai , ci ,di). The arrival time in the system is denoted

by ai . The worst case execution time (WCET) ci is computed on an

arbitrary platform running at a unitary rate (i.e. one computing unit

per time-unit). Finally, di is its absolute deadline. The platform must

therefore execute the job Ji for ci computing units between ai and
di to be completed. A job is said to be active if it has arrived in the

system and is not completed yet. It is said to be inactive otherwise.

3.2.2 Task. In the application, n tasks are forming the task set. A

task τi is defined by three parameters (Ci ,Di ,Ti).Ci is theWCET,Di
is the relative deadline and Ti is the minimum inter-arrival time. In

this work, we are considering implicit deadlines only: ∀i, Di = Ti .
A task τi generates an infinite sequence of jobs. A task releases

a job if and only if it has been enabled. When a task is disabled, its

incomplete jobs are called rem-jobs. It is enabled (resp. disabled)

when its mode becomes active (resp. inactive). A job Ji released at

ai has an absolute deadline of di � ai + Di and ci � Ci .

3.3 Platform model

From simple uniprocessor platforms, modern models are now also

targeting complex platforms. Multiprocessors platforms can be ei-

ther modelled as an identical, uniform or unrelated machine [10].

An identical machine is a platform on which all the processors

are identical. A uniform machine is formed of similar processors

with different performances. In this paper, we consider unrelated

machines. This kind of platform is formed of processors having

different instruction sets and/or different performance. More than

unrelated processors, our model considers reconfigurable proces-

sors. Those processors may change their instruction sets or perfor-

mances at run-time. For example, FPGA or GPU can be considered

here as reconfigurable processors. We abstract here their specificity

in this first model. To overcome this limitation, we may consider

that we have some general purpose processors that are dedicated

to launching jobs on the GPU.

The platform P is composed ofm processors. Each processor pq
has a type πk with k ∈ [1, . . . ,ϕ], and q ∈ [1, . . . ,m]. There are ϕ
different processor types. The vector Π contains the type of each

processor. The qth element Πq contains the type of the processor

pq . The type defines the possible configurations for the processor.

Configurations. A processor of type πk is configured at any time

in a configuration θc from its set of configurations Θk : θc ∈ Θk . A

configuration defines several parameters like the instruction set of

the processor or the speed. The set of sets Θ � {Θ1,Θ2, . . . ,Θϕ }

contains the possible set of configurations for all types. A config-

uration is accessible to processors of one and only one type: i.e.

∀k,k ′,k , k ′ =⇒ Θk ∩ Θk ′ = ∅. There are o different config-

urations, with o �
∑ϕ
k=1 |Θk |. Reconfiguring a processor is not

instantaneous. It takes δc time-units (denoted as the reconfigura-

tion delay) to reconfigure a processor of type πk to θc if θc ∈ Θk ,

otherwise it takes +∞. We consider here parallel reconfigurations.

That is not possible in the general case with existing hardwares.

However, the platforms tend to allow more and more reconfigura-

tions in parallel. The use of 3D-design may allow in a near future a

parallel DPR for the whole platform.

RTNS 2019, November 6–8, 2019, Toulouse, France Goossens, Paolillo, Poczekajlo and Rodriguez

(Non-)Reconfigurable. A processor pq of type πk may be recon-

figurable or non-reconfigurable. It is said to be reconfigurable if and

only if |Θk | > 1.

(In-)Active. A processor may be turned on and off dynamically.

This may be used to manage power consumption. A processor

pq is inactive at time t1 if and only if it is configured in an idle-

configuration. An idle-configuration is a configuration in which a

processor cannot execute any job, i.e. its speed is null for any job.

It is said active otherwise.

3.4 Job progression rate

On heterogeneousmachines, the job progression rate (speed at which

a job is being completed) depends on both the job and the proces-

sor. Specifically, the job progression rate ri,c on the processor pq
depends on both the task τi and the current configuration θc of pq .
Formally, Job Ji completes t × ri,c computing units when executed

on a processor configured in θc for t time-units. This amount may

be null if the task cannot be executed on this configuration.

3.5 Mode model

A mode Mh =< Θ̃h ,Th ,∆h > is a combination of a specific hard-

ware configuration, a specific software and a real-time constraint.

In our model, the software is represented by the task set to ex-

ecute and the hardware by the configurations of the processors.

The real-time constraint bounds the maximum delay to reconfigure

the whole platform to the new mode. In the literature, previous

works — as Nélis’ work in [22]— were only considering software

reconfiguration. Reconfiguring both hardware and software is the

originality of our work.

Each mode has a cluster-based approach. It will consider several

independent groups of processors — denoted as clusters, with a

global approach inside each cluster. To do so, each mode splits its

task set into several task subsets, and schedule each subset upon a

distinct cluster.

3.5.1 Mode specifications. The mode Mh
is defined by the follow-

ing specifications:

Hardware. The processors must be configured in a specific way.

The configurations vector Θ̃h �< mh
1
,mh

2
, . . . ,mh

o > contains for a

specific modeMh
the required numbermh

c of processors configured

in θc .
The required configurations for all the modes are specified as a

vector of configuration vectors: Θ̃ �< Θ̃1, Θ̃2, . . . , Θ̃µ >.

Software. The modeMh
has to execute a specific task set Th , con-

taining νh tasks. To partition the task set among several clusters,

Th itself is divided into task subsets: one per configuration present

in the mode Mh
. The processors configured in θc must run the

task subset Th,c . The set Λ � {T 1,T 2, . . . ,T µ } contains the task

subsets for all the modes. The tasks are said to be mode-dependent:

each task may appear in at most one mode, i.e. ∀h,h′,h , h′ =⇒
(∪Th,c) ∩ (∪Th

′,c) = ∅. This assumption will be discussed in Sec-

tion 7.4.

Delay. Switching from one mode to another is not instantaneous.

Rem-jobs cannot be stopped before completion and reconfiguring

a processor takes a delay. However, this delay must be bounded to

take into account the real-time constraints of the application. ∆h

represents the maximum possible delay for reconfiguring the sys-

tem after a Mode Change Request to Mh
. The set

∆ � {∆1,∆2, . . . ,∆µ } contains the real-time constraint of each

mode.

Table 1: Summary of the notations

A mode Mh ∈ M
Mode change instant tMCR

The mode change graph G

A job Ji
A task τi
A processor pq ∈ P

A type πk

Type of processor pq Πq

A configuration of type πk θc ∈ Θk
Reconfiguration delay to θc δc
Progression rate for Ji on θc ri,c
Configurations requirements of Mode h Θ̃h ∈ Θ̃

Task subset of a modeMh
for proc. in θc Th,c

Task set of a modeMh Th ∈ Λ

ModeMh
’s real time constraint ∆h ∈ ∆

3.6 Model example

In this section, we provide instances of our model to match existing

real-world platforms.

Example 1.Aswe explained, the platform is organised in several

unrelated clusters of identical machines.When usingDPR (Dynamic

Partial Reconfiguration), the Zynq UltraScale+™,may be configured

such that it is composed of the following identical platforms:

• a four cores identical platform meant to execute general

purpose application software (the 4 Cortex-A53 cores);

• a dual core identical platform that may host highly critical

and predictable software (the dual Cortex-R5 cores);

• a GPU dedicated to display information (theMali™-400GPU).

We model it as a single processor;

• 4 independent hardware accelerators that are each dedicated

to one specific task. These accelerators are hosted in the Pro-

grammable Logic (FPGA) which may arbitrarily be divided

in 4 independent slots by the system designer (and managed

by the DPR engine). Each one of these accelerators/slots cor-

responds to a single processor and the whole Programmable

Logic is then modelled as an identical platform with 4 pro-

cessors. The ability of the others processors to change some

features—such as their voltage/frequency— will be ignored,

to keep this example short.

In this example, we assumed that the system designer used Dynamic

Partial Reconfiguration (DPR) capabilities offered by the Zynq chip

family [30] (notice that earlier research allow the use of DPR in

real-time systems as described in Section 2). We assume that the

designer divided the FPGA into 4 processors that are reconfigurable

as defined in Section 3.3.

In this example, the platform P is composed of the following

m = 11 processors:

ACCEPTOR RTNS 2019, November 6–8, 2019, Toulouse, France

• p1,p2,p3,p4: the application cores, forming the Application

Processing Unit (APU). All these cores have the same archi-

tecture (A53) and belong to type π 1
: Π1 = Π2 = Π3 = Π4 =

π 1
. As the APU is a static CPU, it has only one configura-

tion, meaningΘ1 = {θ1}, where θ1 denotes the only possible
configuration of the APU.

• p5,p6: the real-time cores, forming the Real-Time Processing

Unit (RPU). These cores have the same architecture (R5)

and then belong to type π 2
. Similarly to the APU, we have

Θ2 = {θ2}, where θ2 denotes the only possible configuration
of the RPU.

• p7: it represents the GPU, which has its own type π 3
and is

also a static processor: Θ3 = {θ3} where θ3 denotes the only
possible configuration of the GPU.

• p8,p9,p10,p11: the different dynamically partially reconfig-

urable processors of the chip Programmable Logic (from the

FPGA). These 4 processors are independent. We assume that

the processors are specialised for some processing: we have

two types of processors π 4
and π 5

. We assume that in this

example, p8 and p9 are image processing kernels (allowing

to process an input image and apply a filter on it), and that

p10,p11 implement cryptographic accelerators in order to

implement several block cipher algorithms. The image pro-

cessing kernels can be in three configurations: sepia, sobel

and grayscale. The cryptographic accelerators can be config-

ured either to run AES or 3DES block ciphers. Therefore:{
Θ4 = {θsepia,θsobel,θgray}

Θ5 = {θaes,θdes}

The rates of task τaes depend on the configuration of its processor.
This task can be performed only on RPU, GPU or a specialised FPGA.

Therefore, we could have : raes,aes > raes,3 > raes,2 > raes,1 =
r
aes,des = 0. Obviously, this task is completed (way) faster on a

specialised FPGA, and cannot be executed on an FPGA wrongly

configured (hence r
aes,des = 0). This platform example is depicted

in Fig. 3(a). The platform is represented with several divisions into

clusters. Typical reconfiguration times of the Programmable Logic

are of the order of a few milliseconds [24]. These timings could be

used to set the values of δsepia,δsobel,δgray,δaes and δdes.
Example 2. The ARM big.LITTLE architecture is a technique

allowing to switch between high-performance cores and low-power

cores. A typical design of this architecture is composed of 4 A57

cores (the high-performance cluster) and 4 A53 cores (the low-

power cluster) used alternately. These kind of platforms suits our

model as the multi-mode reconfiguration is implemented in the

hardware. In this case, we model the platform P as a set ofm = 8

processors:

• p1,p2,p3,p4: the high-performance cluster. All cores are of

type π 1
and Θ1 = {θA57,θoff 57

}, these configurations mean-

ing that the cores are either active or inactive.

• p5,p6,p7,p8: the low-power cluster. They are of type π
2
and,

similarly to the other type, we have Θ2 = {θA53,θoff 53
}

In some platform designs such as Samsung Exynos 5 Octa, only

one kind of core can run simultaneously — the operating system

must explicitly switch the whole platform from one kind of core to

the other. This constraint can be enforced by defining the clusters

and modes accordingly and by using the inactive configurations

θ
off 53

and θ
off 57

. For example, if we define twomodesM53
andM57

,

Θ̃53 =< m53

A53,m
53

A57 >=< 4, 0 > and Θ̃57 =< m57

A53,m
57

A57 >=<

0, 4 >. This means that during mode M53
, only the processors of

type π 2
will be active.

These two examples illustrate how generic our model is and how

it is able to capture the essence of real-world platforms.

4 PROTOCOL

In this section, we introduce the second contribution of this pa-

per: the protocol to handle mode transitions on a reconfigurable

platform. It is called acceptor, for : AsynChronous ClustEr-based

ProTOcol for multi-mode applications on Reconfigurable platforms.

acceptor conducts the reconfiguration phase: it schedules the rem-

jobs, performs the requested reconfigurations and enables the new

mode tasks. It also respects the real-time constraints such as the

delay for new mode’s activation and the rem-jobs hard deadlines.

The description of the protocol will be preceded by an introduc-

tion about clusters.

4.1 Clustered platform

A clustered platform is composed of several groups of processors

called clusters. Formally, a cluster is formed by several processors,

configured identically. At a given instant t , a processor of type πk

configured in θc belongs to one and only one cluster. This cluster

is composed of all processors of type πk configured in θc . Jobs
migrations are only allowed inside their cluster.

In this paper we will use the following popular concepts regard-

ing multi-mode problem:

Work-conserving A scheduler is work-conserving iff the proces-

sors can be idle only when there are no job waiting to exe-

cute.

The cluster’s makespan is the required time to complete all the

rem-jobs generated by the task set of the cluster. [22] pro-

posed an upper-bound on the worst case makespan MS.

Idle A cluster is said to be idle iff all its processor are idle. A pro-

cessor is idle if it is neither executing tasks nor being recon-

figured.

Idlek instant (from [20]) An Idlek instant is the earliest instant

such as at least k processors are idle. The upper-bound on

the Idlek instant denoted as Idlek .

A πk - cluster is composed of processors of type πk , configured
identically.

A θc - cluster is a cluster composed of processors configured in θc .

Because the processors may be reconfigured, the clusters may

(only) be modified during a mode change phase. Clustering is based

on the configuration of the system, and may thus change from

one mode to another. Fig. 3 represents the same platform with two

different clustering. For example, p8 is on a cluster with p9 in the

first mode (see (a)) but is then alone in the second mode (see (b)).

4.2 acceptor

The acceptor protocol is an aperiodic asynchronous protocol —a

protocol is periodic iff it has mode-independent tasks, a protocol is

synchronous iif dependent tasks of two different modes can never

RTNS 2019, November 6–8, 2019, Toulouse, France Goossens, Paolillo, Poczekajlo and Rodriguez

p1 p2 p3 p4

p5 p6 p7

p8 p9 p10 p11

(a)

p1 p2 p3 p4

p5 p6 p7

p8 p9 p10 p11

(b)

Figure 3: Two possible divisions of the example platform

(based on the Zynq UltraScale+™) into several clusters.

0 1 2 3 4 5 6 7 8 9 10

p1 τ1 τ2 τ4 τ5 τ2 r. τ9

p2 τ2 τ3 τ1 r. τ10

p3 τ6 τ8 τ6 τ8 r. τ11

p4 τ7 τ8 τ7 τ8 r. τ12 τ13

Cluster 1

Cluster 2

MCR Mdst

Cluster 3

Cluster 4

Cluster 5

1,2,3,4,5 1,2

6,7,8 6,7,8

Figure 4: Protocol illustration

be active simultaneously. It can be used with sporadic task sets,

scheduled by a clustered work-conserving scheduler.

The approach is to schedule the rem-jobs, and reconfigure each

processor once it becomes idle. This protocol is composed of an

offline phase and a run-time phase. The offline phase determines

for each cluster the required reconfigurations for each possible

Mode Change Transition (see Section 4.2.1). The run-time phase is

dedicated to schedule the rem-jobs and reconfigure the processors

(see Section 4.2.2). This run-time phase focuses on each cluster

individually. An illustration is given in Fig. 4. Finally, an example

of the protocol is given in Section 4.2.3.

4.2.1 Offline: computing the required reconfigurations. The offline

phase simply computes which reconfigurations must be done for

each mode change phase from Msrc
to Mdst

. This will be done

iteratively for each type πk . To do so, the protocol first computes the

differences between the required reconfigurations of both modes.

Then, it computes the makespan of each πk -cluster, using the

bound provided by [22]. It then assigns the longest (resp. shortest)

required reconfigurations (based on the reconfiguration delays)

-to the πk - clusters having the shortest (resp. longest) makespans.

Inside each cluster, the shortest (resp. longest) reconfigurations are

assigned to the processors being idle the first (resp. last), based on

the idle-instant upper-bound from [20].

This is mandatory since the reconfiguration delay is based on

the new configuration and not on the current configuration. The

assignment is denoted {θc ,θc ′} where θc is the configuration of

the processor in Msrc
and θc ′ is the configuration of the processor

inMdst
.

Formally,

• Compute for each θc - clusters in each mode Mh
the

makespan upper-bound MS for the task subset Th,c onmh
c

processors;

Then, ∀(Msrc,Mdst) ∈ G,k ∈ [1, . . . ,ϕ]:

(1) The missing configurations for πk - clusters are all configura-

tionsθc ∈ Θk wherem+c > 0, withm+c � max(0,mdst

c −msrc

c).

Symmetrically, the excess configurations are all θc ∈ Θk
wherem−

c > 0, withm−
c � max(0,msrc

c −mdst

c).

(2) To perform the reconfiguration, we use a vector containing

missing configurations. This vector will be used at run-time

to track the required configurations to perform. Store
˜θ+ �<

θc ,θc ′ , . . . > a vector of missing configurations.
˜θ+ contains

m+c times the configuration θc . Order ˜θ+ by reconfiguration

delay, in decreasing order.

(3) Symmetrically, store
˜θ− �< θc ,θc ′ , . . . > a vector of ex-

cess configurations.
˜θ− containsm−

c times the configuration

θc . Order ˜θ− by the cluster’s makespan of the processors

configured in θc ′′ ∈ ˜θ−, in increasing order.

(4) Bind the x th longest reconfiguration to the x th idle processor.

The x th longest reconfiguration θc is determined using its

reconfiguration delay δc . Thex
th
idle processor is thex th pro-

cessor to become idle on this cluster during this mode change

phase. To do so, define the assignment {θc ,θc ′}, where θc is

the x th element of
˜θ− and θc ′ is the x

th
of

˜θ+.
(5) Store the assignment {θc ,θc ′} in the multi-set RT

src,dst
.

The results will be used at run-time. Because a cluster is formed

by processors of the same type and configured identically the re-

quired reconfigurations for the θc - cluster are contained in the

multiset {{θc ,θc ′} | {θc ,θc ′} ∈ RT
src,dst}.

4.2.2 Run-time: scheduling and reconfiguring. At run-time, the pro-

tocol must successfully schedule the rem-jobs, and reconfigure the

processors as computed in the offline phase. This phase is straight-

forward: it will schedule the tasks using the same scheduler as

before. The only difference concerns the reconfigurations: when a

processor becomes idle, it may be reconfigured. For each θc - cluster
it takes as input the list of remaining rem-jobs J and the required re-

configurations to make {{θc ′ ,θc ′′} | c = c ′∧ {θc ′ ,θc ′′} ∈ RT
src,dst}.

Formally,

• Schedule J using the same scheduler as before;

• When a processor becomes idle, reconfigure it to the longest

required reconfigurationθ
dst

that hasn’t been done yet, where

θ
dst

∈ {{θc ′ ,θdst} | c = c ′ ∧ {θc ′ ,θdst} ∈ RT
src,dst}.

Whenevermdst

c processors are reconfigured to θc , the θc - cluster

of the new modeMdst
is formed and its task set is activated. This

phase ends once every cluster is idle and reconfigured. The new

modeMdst
is then enabled.

4.2.3 Example. Figure 4 depicts an example of the protocol’s execu-

tion. The platform is composed of 4 processors (m = 4). Processors

p1 and p2 share the same type (i.e. Π1 = Π2 = π 1
), as p3 and p4 (i.e.

Π3 = Π4 = π 2
), Two processors must be configured in θ1 for mode

Msrc
:
˜θ src = {2, 2, 0, 0, 0}. For example,msrc

1
= 2. For mode Mdst

:

˜θdst = {0, 0, 2, 1, 1}. This means that there will be three clusters in

ACCEPTOR RTNS 2019, November 6–8, 2019, Toulouse, France

this mode, because there are three different types of required con-

figurations. Here are some of the different reconfigurations delay:

δ3 = 2, δ4 = 3, δ5 = 2. The real-time constraint is ∆dst = 10.

For π 2
processors,

˜θ− =< θ2,θ2 > and
˜θ+ =< θ5,θ4 >. Comput-

ing also
˜θ− and

˜θ+ for π 1
, we obtain all the required reconfigura-

tions. Using the clusters’ makespans, we can assign those reconfigu-

rations. Themulti-setRT src,dst = {(θ1,θ3), (θ1,θ3), (θ2,θ4), (θ2,θ5)}.
At t = 0, p1 and p2 form the θ1 - cluster denoted as cluster 1. p3

and p4 form the θ2 - cluster denoted as cluster 2. The tasks τ1 and
τ2 release a job at t = 3, which become rem-jobs. The same goes

for τ6,τ7 and τ8
Processor p4 becomes idle at t = 5. There are no other job to

execute which leads the protocol to reconfigure it. The θ2 - cluster
has the following reconfigurations to make: (θ2,θ4), (θ2,θ5). The
reconfigurations to θ5 are made first because δ5 > δ4. These recon-

figurations end at t = 8. Because mdst

5
= 1, a cluster of the new

mode is formed and its task set {τ12,τ13} is activated. On the other

hand, even if p2 has been reconfigured at t = 8, becausemdst

3
= 2:

the cluster is not formed yet. At t = 9, all the new mode’s clus-

ters have been formed. The mode Mdst
can then be enabled. The

phase last for 9 − 4 < ∆dst
units of time, and all the rem-jobs were

successfully scheduled so the mode change phase succeeds.

5 MAKESPAN UPPER-BOUND

To assert the feasibility of a given system using the acceptor pro-

tocol, we now introduce an upper-bound of the instant in which the

cluster’s rem-jobs are completed, and the required reconfigurations

are done. This instant is denoted as reconfigured, and can be im-

mediately derived to obtain an upper-bound on any mode change

phase. Then, the validity of the protocol will be demonstrated in

Section 6.

The new upper-bound denoted as reconfigured will be used to

verify the feasibility of an application running on a given platform.

Lemma 5.1 (Lemma 2.11 in [20]). Suppose that J is ordered by

non-decreasing job processing times, i.e., c1 ≤ c2 ≤ · · · ≤ cn , all
starting at t = 0. Then, whatever the job priority assignment, an

upper-bound on the Idlek instant, 1 ≤ k ≤ m, when scheduled by

a FJP work-conserving global scheduler upon m identical processors,

with no reconfiguration is given by:

Idlek =

{
ck if n =m∑n

i=1 ci+(k−1)×cn−m+k
m otherwise

(1)

The new upper-bound reconfigured is based on Idlek . It simply

searches for the processor with the maximum sum of idle time +

reconfiguration delay.

Corollary 5.2 (Upper bound on the cluster’s makespan).

Suppose that J is ordered by non-decreasing job processing times, i.e.,

c1 ≤ c2 ≤ · · · ≤ cn , all starting at t = 0.

Suppose that the required reconfigurations’ delays are in the vector

∆, ordered by reconfiguration time in decreasing order, and that δq is

the qth element of the vector.

Then, whatever the job priority assignment, an upper-bound on

the cluster’s makespan reconfigured, when scheduled by a FJP work-

conserving clustered scheduler is

reconfigured =
m
max

q=1
{Idleq + δq } (2)

Proof. The proof is trivially obtained by construction. □

6 VALIDITY

A validity test is used to determinewhether themode change phases

of an application will be successfully managed by a multi-mode

protocol, on a specific system. To ensure this, we need to verify

that every deadline will be met during the transition phase, and

that the new mode will always be enabled on time.

We now introduce the sustainability. This notion will be useful to

prove that scheduling rem-jobs is at most as difficult as scheduling

the recurrent tasks.

Sustainability. A scheduler S is sustainable iff for any set of jobs

J schedulable by S , any jobset J
′
derived from J where all jobs

are identical or smaller (equal or smaller C) will be feasibly and

non-strictly faster scheduled by S .
Lemma 6.1 (Corollary 8 from [6]) will be used to show that any

scheduler used in the protocol will be sustainable, by hypothesis.

This lemma applies to any uniform multiprocessor platform, and

thus to identical multiprocessor platform. Therefore, we consider

in the following that the jobset J is composed of one job of each

task, as a worst-case.

Lemma 6.1 ([6]). Any work-conserving and Fixed Job Priority (FJP)
algorithm is sustainable on uniform multiprocessor platforms.

The schedulability of the rem-jobs during mode change phase is

ensured by the Lemma 6.1.

Lemma 6.2 (Rem-job’s schedulability). Every rem-job’s dead-

line of every cluster will be respected during every possible mode

change phase, iff (i) the scheduler is a clustered, FJP, preemptive, work-

conserving scheduler and (ii) T src,c
is schedulable by the scheduler

uponmsrc

c processors configured in θc .

Proof. Because of (i) and Lemma 6.1, we know that the sched-

uler is sustainable. Hence, the scheduler is sustainable and (ii): the

rem-jobs of the task setT src,c
are schedulable on their cluster. Thus,

the schedulability is ensured. □

Lemma 6.3 ensures that the real-time constraint of each mode

will be respected during every possible transition.

Lemma 6.3 (Transition’s time constraint). The protocol will

respect the time constraint ∆
dst

iff ∀ src, dst, (Msrc,Mdst) ∈ G,

∀θc - cluster, with ∆src,dst
c being the required reconfigurations’s de-

lays ordered in decreasing order:

∆
dst

≥ max

θc - cluster
reconfigured(T src,c ,msrc

c ,∆
src,dst
c)

Proof. The right part of the inequation computes the maximal

upper-bound reconfigured. By construction, if the hypothesis is

respected, every cluster of each possible transition will be reconfig-

ured when required. □

Theorem 6.4 proves the validity of our protocol, under its hy-

pothesis.

RTNS 2019, November 6–8, 2019, Toulouse, France Goossens, Paolillo, Poczekajlo and Rodriguez

Theorem 6.4 (Validity of acceptor). The protocol acceptor

is valid iff (i) the scheduler is a clustered, FJP, preemptive, work-

conserving scheduler , (ii) T src,c
is schedulable by the scheduler upon

msrc

c processors configured in θc and (iii) ∀ src, dst, (Msrc,Mdst) ∈

G, ∀θc - cluster, with ∆src,dst
c being the required reconfigurations’s

delays ordered in decreasing order:

∆
dst

≥ max

θc - cluster
reconfigured(T src,c ,msrc

c ,∆
src,dst
c)

Proof. To prove the validity of the protocol, we must prove that

every rem-job’s deadline will be respected during the mode change

phase and that the real-time constraint ∆
dst

will be respected during

each possible transition from every modeMsrc
to modeMdst

.

• Because of the hypotheses (i–ii), Lemma 6.2 can be applied

an thus prove that every job’s deadline will be respected

during the mode change phase.

• Because of the hypotheses (i–iii), Lemma 6.3 can be applied.

Every real-time constraint will be therefore respected.

Because the job’s deadlines and the real-time constraint will be

respected, the protocol is valid when the hypotheses (i–iii) are

respected. □

7 EVALUATION

In this section, we present a complete evaluation of the contribution.

We first evaluate in Section 7.1 the theoretical worst case time

complexity. Then, we use simulations in Section 7.2 to evaluate

the pessimism of the bound introduced in Section 5. Section 7.3

performs a competitive analysis of the protocol itself, and finally

Section 7.4 discuss a limitation of the model.

7.1 Complexity

We now evaluate the theoretical worst case time complexity of both

the offline and run-time phases of the protocol.

Concerning the offline phase: the computation of Idlek has a

worst case time complexity of O(n), as MS. First, the protocol com-

putes C makespan upper-bounds, where C ≤ m is the number of

clusters and n the largest number of tasks that a cluster has to

schedule, hence a complexity of O(C × n) = O(m × n). Steps 2
and 3 performed on clusters contain a sort on at mostm elements,

and Step 3 also computes Idlek for at most m processors; Thus,

complexity of Step 2 is O(m × log(m)) and complexity Step 3 is

O(m × log(m) +m) = O(m × log(m)). The total complexity is thus

O(m × log(m) +m × n).
Concerning the run-time phase, it has the same complexity as the

scheduler. Choosing the reconfiguration to perform can be made in

O(1).
Complexities for both offline and run-time phases are very low,

and make the protocol scalable.

7.2 Empirical pessimism of reconfigured

To the best of our knowledge, the upper-bound Idlek pessimism

has not been evaluated, neither theoretically nor empirically. We

provided here an empirical evaluation of reconfigured, which is

based on Idlek . We measure the pessimism ratio
upper-bound

mode change time
,

where the mode change time is a measurement of the simulated

Figure 5: Pessimism of reconfigured

mode change phase, and where the upper-bound corresponds to the

computation of reconfigured for a given cluster.

The experiment has been conducted for clusters withm = 2, 4, 8,

16, 32, 64, 128 processors. The reconfiguration times are uniformly

chosen in the range [0, 10], where 0 indicates that no reconfigura-

tion is required. We generate approximately 1 000 feasible task sets

with utilisations ∈ (p − 0.1,p], where we increase p from 0.6 to 1.0

in steps of 0.1. The deadlines are uniformly chosen in the range

[1, 20]. As a scheduler, we use Global-RM and remove any non-

schedulable task set from our experiments. For those experiments,

time is discrete.

The results are displayed in Fig. 5 and can be read this way: the

average pessimism ratio is 1.125 for a cluster with m = 4 and a

task set utilisation of 0.7. This means that the upper-bound is (on

average) 12.5% larger than the actual duration in this configuration.

One can observe two major trends: first, the pessimism does not

depend on the number of processor. Secondly, a higher utilisation

leads to a higher (but bounded) pessimism until u ∈ (0.9, 1.0] for

most cases. The pessimism is empirically bounded by 1.2. Atu = 1.0,

the pessimism ratio drops to 1.0. This phenomena is only due to

our task set generator which produces task sets with a different

shape for such a high utilisation.

This experimental results shows that the upper-bound

reconfigured is accurate and can be used for clusters having a large

amount of processors or a high utilisation.

7.3 Competitive analysis of acceptor

After the empirical evaluation of the upper-bound reconfigured’s

pessimism,we now evaluate the competitive analysis of the protocol

itself. A protocol is said to be λ-competitive if it takes at most λ ×O
time to complete a mode change phase, whereO is the optimal mode

change phase duration. To perform the competitive analysis of the

protocol, we search for a worst case scenario, i.e. a system for which

the relative difference between our protocol’s performances and an

optimal one is the highest. We first define what a squeezable system

is, and then prove several properties on those systems, which leads

ACCEPTOR RTNS 2019, November 6–8, 2019, Toulouse, France

to prove that they correspond to the worst case. Once we have this

worst case, we compute the competitiveness of the protocol. An

example of a squeezable system is depicted in Fig. 6. The top graph

shows a specific mode change phase handled by acceptor, and

below is the same mode change phase handled by an optimal one.

Lemma 7.2 and Lemmas 7.4–7.6 introduce several properties that

stand for any system. Lemma 7.1, Corollary 7.3 and Lemma 7.7

use both properties on squeezable systems and the global proper-

ties to prove that squeezable systems are a worst case in Corol-

lary 7.8. Using the worst case, Theorem 7.9 states that acceptor

is
2m−1
m -competitive on a cluster composed ofm processors. Then,

Corollary 7.10 states that acceptor is 2-competitive.

Several useful definitions follow. As defined in Section 5, an

Idlek instant is the earliest instant such as at least k processors are

idle. Formally, Idlek (J ,m) is the earliest instant such as at least k
processors may be idle when the job set J is scheduled uponm pro-

cessors, by any work-conserving scheduler. Unlike Idlek , this value

is the exact instant. We also introduce the following new notations:

Idlemax(S) is the length of the longest period during which a pro-

cessor is idle when a mode change phase of a system S is handled

by acceptor. The required time to handle the mode change phase

of S with an optimal protocol (resp. acceptor) is denoted |OPT(S)|
(resp. denoted | US(S)|). An optimal protocol doesn’t have the same

limitation as acceptor. For example, it doesn’t have to schedule the

rem-jobs using a work-conserving scheduler. We also introduce the

notion of excess idle, denoted Idle+. This is the extra duration where

processors are idle during a mode change with our protocol, in com-

parison to an optimal. For example, in Fig. 6 Idle+ = 2 × 6 = 12.

Finally, we define the notion of squeezable system, in the context

of a mode change transition.

Squeezable A system S is said to be squeezable if and only if S
has only one required reconfiguration θc —with a reconfig-

uration delay of δc— to perform during the mode change

transition and a set of rem-jobs J on a cluster having m
processors such that:

i

∑
Ci = δc × (m − 1),

ii Idle1(J ,m) = Idle2(J ,m) = · · · = Idlem (J ,m) = δc ×
m−1
m ,

iii Idle1(J ,m−1) = Idle2(J ,m−1) = · · · = Idlem−1(J ,m−1) =

δc ,
iv ∀i,di ≥ δc .

This notions will be heavily used in the following lemmas, corollar-

ies and theorems, see Fig. 6 for an illustration.

In the following, we assume that any system S has the required

reconfigurations Θ̃ to perform, and a set of rem-jobs J to execute

on a cluster having m processors during any mode change. For

such a system, we denote the longest atomic duration —either

the WCET of a job or a reconfiguration delay— the value C �
max{max

n
i=1{Ci },maxθc ∈Θ̃

{δc }}.

Lemma 7.1. Any optimal mode change of any squeezable system

S may be handled in δc time-units. Formally, |OPT(S)| = δc = C .

Proof. The rem-jobs can all be scheduled onm − 1 processors,

and one processor can be reconfigured at t = 0. The rem-jobs will be

complete at t = Idlem−1(J ,m− 1) = δc and the reconfiguration will

be done at t = δc . Because of iv), the deadlines will be respected. By

0 1 2 3 4 5 6 7 8 9 10

p1 τ1 τ2

p2 τ2 τ4

p3 τ3 τ4 τ5 reconfiguration, δ = 6

0 1 2 3 4 5 6 7 8 9 10

p1 reconfiguration, δ = 6

p2 τ1 τ2 τ3 τ4

p3 τ2 τ3 τ4 τ5

Figure 6: A squeezable system withm = 3 and n = 5

construction, δc = C . The lemma follows. This lemma is illustrated

in Fig. 6. □

Lemma 7.2. Any optimal mode change of any system S takes more

than C time-units. Formally, |OPT(S)| ≥ C .

Proof. No intra-parallelism is allowed, so the system S may not

last less than the longest element to schedule, whether it is a job or

a reconfiguration. □

Corollary 7.3. For any mode change of any system S , the ratio
C

|OPT(S) | is maximised when |OPT(S)| = C .

Proof. This is a direct implication of Lemma 7.2. □

Lemma 7.4. During any mode change handled by acceptor of

any system S , a processor cannot be idle longer than C time-units.

Formally, Idlemax(S) ≤ C .

Proof. acceptor uses a work-conserving scheduler. Thus, a

processor may be idle only if the number of jobs and reconfigura-

tions waiting to be executed or performed is lower than the number

of processors. It immediately follows that all the reconfigurations

and jobs will be completed at most C time-units later. The lemma

follows. □

Lemma 7.5. For any mode change of any system S ,

| US(S)| = |OPT(S)| + Idle+
m .

Proof. We introduce here the notion of Idleopt. The value Idleopt

is the amount of idle time with an optimal protocol. It stands that:

m × |OPT(S)| =
n∑
i=1

Ci +
∑
θc ∈Θ̃

δc + Idleopt

Informally, this equation represents the sum of the work to perform

plus the idle time. By definition of the excess idle, it stands that:

m × | US(S)| =
n∑
i=1

Ci +
∑
θc ∈Θ̃

δc + Idleopt + Idle+

With the two previous equations, we trivially have that:

| US(S)| =

∑n
i=1Ci +

∑
θc ∈Θ̃

δc + Idleopt + Idle+

m
= |OPT(S)|+

Idle+

m
. □

RTNS 2019, November 6–8, 2019, Toulouse, France Goossens, Paolillo, Poczekajlo and Rodriguez

Lemma 7.6. For any mode change of any system S handled by

acceptor,

Idle+ ≤ (m − 1) ×C

Proof. By definition, the excess idle is smaller than the sum of

the length of all the periods where a processor is idle. At mostm−1

processors will be idle, because at least one processor will never be

idle. Therefore:

Idle+ ≤ (m − 1) × Idlemax(S)

≤ (m − 1) ×C (Lemma 7.4)

The lemma follows. □

Lemma 7.7. For any mode change of any system S handled by

acceptor, when
C

|OPT(S) | is maximised,
| US(S) |
|OPT(S) | is maximised as

well.

Proof.

| US(S)| = |OPT(S)| +
Idle+

m
(Lemma 7.5)

⇒
| US(S)|

|OPT(S)|
=

|OPT(S)| + Idle+
m

|OPT(S)|

⇒
| US(S)|

|OPT(S)|
≤

|OPT(S)| +C × m−1
m

|OPT(S)|
(Lemma 7.6)

⇒
| US(S)|

|OPT(S)|
≤ 1 +

C

|OPT(S)|
×
m − 1

m

□

Corollary 7.8. When handling any mode change of any squeez-

able system S with acceptor, the ratio
| US(S) |
|OPT(S) | is maximised. Thus,

any squeezable system is a worst-case of acceptor.

Proof. Lemma 7.1 and Corollary 7.3 states that this corollary’s

hypotheses leads to a maximal ratio
C

|OPT(S) | and Lemma 7.7 shows

that maximising the ratio
C

|OPT(S) | is equivalent to maximising the

ratio
| US(S) |
|OPT(S) | . Thus, this corollary follows. □

Theorem 7.9. For any system composed ofm processors, the pro-

tocol acceptor is
2m−1
m -competitive.

Proof. To prove that acceptor is
2m−1
m -competitive, we have

to prove that for any system S , the ratio
| US(S) |
|OPT(S) | ≤ 2m−1

m . The

Corollary 7.8 states that the maximal ratio will be obtained on any

squeezable system S . On such a system, the ratio

| US(S)|

|OPT(S)|
=

Idle1(J ,m) + δc
δc

=
δc ×

m−1
m + δc

δc

=
2m − 1

m

Thus, acceptor takes at most
2m−1
m of the required time than an

optimal protocol. The theorem follows.

Figure 6 shows an example of such a system withm = 3, n = 5

and δc = 6. □

Corollary 7.10. For any system composed ofm processors, the

protocol acceptor is 2-competitive. This upper-bound is tight.

Proof. Theorem 7.9 states that acceptor is
2m−1
m -competitive.

It stands that

∀m > 0,
2m − 1

m
< 2

Thus, acceptor is 2-competitive. This upper-bound is tight, be-

cause of the following limit:

lim

m→∞

2m − 1

m
= 2

□

7.4 Handling mode independent tasks

In our model, all tasks are mode dependent. Real-time applications

may have mode independent tasks: i.e. tasks that run during the

whole lifespan of the application such as the OS. Our model ’as is’

does not permit such tasks to run. However, a trivial extension with

no effect on the validity nor the complexity would be to restrain

those tasks to a specific cluster with no reconfiguration allowed.

Still, mode dependent tasks could run on such a cluster and because

of Lemma 6.1, their rem-jobs would be correctly scheduled.

Doing so removes the limitation in a very easy way and makes

the model usable for real-world applications.

8 CONCLUSIONS AND FUTUREWORK

In this research we propose a new model combining dynamic hard-

ware with software reconfigurability. This is the first model for

multi-mode real-time applications on reconfigurable heterogeneous

platforms. We also propose a protocol to handle the mode change

transition of such application and prove its validity. An upper-

bound on the mode change transition is also introduced. Then,

a complete evaluation of the contributions is done by evaluating

the usability of the protocol (by evaluating its worst-case time

complexity), its performance (by evaluating the competitiveness

of the protocol, and the empirical pessimism of the bound) and

discussing the constraint of the model on mode-independent tasks

and showing that this is not a limitation.

Several extensions to this work can be done. First, the protocol

could be improved in terms of competitiveness. We could improve

the model to have a dynamic number of processors at run-time,

which is allowed by FPGA reconfiguration. We could also try to

introduce in a more advance way mode-independent tasks. Finally,

other kind of possible future work is to put this model and protocol

(and future extensions) into practice by implementing those in a

Real-Time Operating System supporting a heterogeneous reconfig-

urable platform such as the Zynq UltraScale+™. Such experiments

would validate the approach of this theoretical work in a close-to-

industry, real-world scenario.

ACKNOWLEDGEMENT

This work is supported in part by the H2020-ICT-2015 Innovation

Action 688403 Tulipp and by the Fédération Wallonie-Bruxelles,

Concerted ResearchAction named Sofist. Lastly, the authors would

like to thank Dragomir Milojevic for his helpful collaboration, Juan

ACCEPTOR RTNS 2019, November 6–8, 2019, Toulouse, France

M. Rivas for his careful review of our manuscript and the reviewers

for their insightful comments.

REFERENCES

[1] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith. 2017. GPU

Scheduling on the NVIDIA TX2: Hidden Details Revealed. In 2017 IEEE Real-Time

Systems Symposium (RTSS). 104–115. https://doi.org/10.1109/RTSS.2017.00017

[2] Enrico Bini. 2016. Adaptive Fair Scheduler: Fairness in Presence of Disturbances.

In Proceedings of the 24th International Conference on Real-Time Networks and

Systems (RTNS ’16). ACM, New York, NY, USA, 129–138. https://doi.org/10.1145/

2997465.2997468

[3] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. Buttazzo. 2016. A

Framework for Supporting Real-Time Applications on Dynamic Reconfigurable

FPGAs. In 2016 IEEE Real-Time Systems Symposium (RTSS). 1–12. https://doi.org/

10.1109/RTSS.2016.010

[4] A. Biondi and G. Buttazzo. 2017. Timing-aware FPGA partitioning for real-time

applications under dynamic partial reconfiguration. In 2017 NASA/ESA Conference

on Adaptive Hardware and Systems (AHS). 172–179. https://doi.org/10.1109/AHS.

2017.8046375

[5] Martin Cornil, Antonio Paolillo, Joël Goossens, and Ben Rodriguez. 2017. Research

and implementation challenges of RTOS support for heterogeneous computing

platforms. InHeterogeneous Architectures and Real-Time Systems Seminar, Brussels.

[6] Liliana Cucu-Grosjean and Joël Goossens. 2010. Predictability of Fixed-Job

Priority schedulers on heterogeneous multiprocessor real-time systems. Inf.

Process. Lett. 110, 10 (2010), 399–402. https://doi.org/10.1016/j.ipl.2010.03.009

[7] Matthias Kalle Dalheimer andMattWelsh. 2005. Running Linux (5th ed.). O’Reilly,

Chapter 10, 382–383.

[8] EdsgerW. Dijkstra. 1968. Letters to the editor: go to statement considered harmful.

Commun. ACM 11, 3 (1968), 147–148. https://doi.org/10.1145/362929.362947

[9] Paul Emberson and Iain Bate. 2007. Minimising task migration and priority

changes in mode transitions. In 13th IEEE Real Time and Embedded Technology

and Applications Symposium. IEEE, 158–167.

[10] S. Funk, J. Goossens, and S. Baruah. 2001. On-line scheduling on uniform multi-

processors. In Proceedings 22nd IEEE Real-Time Systems Symposium (RTSS 2001)

(Cat. No.01PR1420). 183–192. https://doi.org/10.1109/REAL.2001.990609

[11] Joël Goossens, Shelby Funk, and Sanjoy K. Baruah. 2003. Priority-Driven Sched-

uling of Periodic Task Systems on Multiprocessors. Real-Time Systems 25, 2-3

(2003), 187–205. https://doi.org/10.1023/A:1025120124771

[12] Joël Goossens and Xavier Poczekajlo. 2017. Multimode application on a recon-

figurable platform: Introducing a new model and a first protocol. In 11th Junior

Researcher Workshop on Real-Time Computing. 1–4.

[13] Joël Goossens and Pascal Richard. 2013. Partitioned scheduling of multimode

multiprocessor real-time systems with temporal isolation. In Proceedings of the

21st International Conference on Real-Time Networks and Systems. ACM, 297–305.

[14] Rhan Ha and Jane W.-S. Liu. 1994. Validating Timing Constraints in Multiproces-

sor and Distributed Real-Time Systems. In Proceedings of the 14th International

Conference on Distributed Computing Systems, Poznan, Poland, June 21-24, 1994.

162–171. https://doi.org/10.1109/ICDCS.1994.302407

[15] Laura Hopperton. 2011. embedded world: Xilinx introduces ’industry’s first’

extensible processing platform. (2011). https://goo.gl/EuNhir

[16] Engin Ipek, Meyrem Kirman, Nevin Kirman, and Jose F. Martinez. 2007. Core

Fusion: Accommodating Software Diversity in Chip Multiprocessors. In Proceed-

ings of the 34th Annual International Symposium on Computer Architecture (ISCA

’07). ACM, 186–197. https://doi.org/10.1145/1250662.1250686

[17] J. Liedtke. 1995. On Micro-kernel Construction. In Proceedings of the Fifteenth

ACM Symposium on Operating Systems Principles (SOSP ’95). ACM, New York,

NY, USA, 237–250. https://doi.org/10.1145/224056.224075

[18] Chung Laung Liu and James W Layland. 1973. Scheduling algorithms for multi-

programming in a hard-real-time environment. Journal of the ACM (JACM) 20, 1

(1973), 46–61.

[19] José Marinho, Gurulingesh Raravi, Vincent Nélis, and Stefan M Petters. 2011.

Partitioned Scheduling of Multimode Systems onMultiprocessor Platforms: when

to do the Mode Transition? RTSOPS (2011).

[20] Vincent Nélis. 2010. Energy-Aware Real-Time Scheduling in Embedded Multipro-

cessor Systems. Ph.D. Dissertation. Université libre de Bruxelles.

[21] Vincent Nélis, Björn Andersson, JoséMarinho, and StefanM. Petters. 2011. Global-

EDF Scheduling ofMultimode Real-Time Systems ConsideringMode Independent

Tasks. In 23rd Euromicro Conference on Real-Time Systems, ECRTS 2011, Porto,

Portugal, 5-8 July, 2011. 205–214. https://doi.org/10.1109/ECRTS.2011.27

[22] Vincent Nélis, Joël Goossens, and Björn Andersson. 2009. Two Protocols for

Scheduling Multi-mode Real-Time Systems upon Identical Multiprocessor Plat-

forms. In Euromicro Conference on Real-Time Systems. 151–160.

[23] M. Pagani, A. Balsini, A. Biondi, M. Marinoni, and G. Buttazzo. 2017. A Linux-

based support for developing real-time applications on heterogeneous platforms

with dynamic FPGA reconfiguration. In 2017 30th IEEE International System-on-

Chip Conference (SOCC). 96–101. https://doi.org/10.1109/SOCC.2017.8226015

[24] Marco Pagani, Mauro Marinoni, Alessandro Biondi, Alessio Balsini, and Gior-

gio Buttazzo. 2016. Towards real-time operating systems for heterogeneous

reconfigurable platforms. OSPERT 2016 (2016), 49.

[25] Gurulingesh Raravi, Björn Andersson, Vincent Nélis, and Konstantinos Blet-

sas. 2014. Task assignment algorithms for two-type heterogeneous multi-

processors. Real-Time Systems 50, 1 (2014), 87–141. https://doi.org/10.1007/

s11241-013-9191-3

[26] Jorge Real and Alfons Crespo. 2004. Mode Change Protocols for Real-Time

Systems: A Survey and a New Proposal. Real-Time Systems 26, 2 (2004), 161–197.

https://doi.org/10.1023/B:TIME.0000016129.97430.c6

[27] Ahmad Sadek, Ananya Muddukrishna, Lester Kalms, Asbjørn Djupdal, Ariel Pod-

lubne, Antonio Paolillo, Diana Goehringer, and Magnus Jahre. 2018. Supporting

Utilities for Heterogeneous Embedded Image Processing Platforms (STHEM): An

Overview. In Applied Reconfigurable Computing. Architectures, Tools, and Applica-

tions, Nikolaos Voros, Michael Huebner, Georgios Keramidas, Diana Goehringer,

Christos Antonopoulos, and Pedro C. Diniz (Eds.). Springer International Pub-

lishing, Cham, 737–749.

[28] Chi-Sheng Shih and Chang-Min Yang. 2017. Schedulability Analysis of Mode

Change for Imprecise Computation on Multi-Core Platforms. In Proceedings of

the International Conference on Research in Adaptive and Convergent Systems.

ACM, 261–268.

[29] Xilinx. 2018. Zynq UltraScale+MPSoC. (2018). https://www.xilinx.com/products/

silicon-devices/soc/zynq-ultrascale-mpsoc.html

[30] Christian Kohn (Xilinx). 2013. Partial Reconfiguration of a Hardware Accelerator

on Zynq-7000 All Programmable SoC Devices (XAPP1159). (2013).

https://doi.org/10.1109/RTSS.2017.00017
https://doi.org/10.1145/2997465.2997468
https://doi.org/10.1145/2997465.2997468
https://doi.org/10.1109/RTSS.2016.010
https://doi.org/10.1109/RTSS.2016.010
https://doi.org/10.1109/AHS.2017.8046375
https://doi.org/10.1109/AHS.2017.8046375
https://doi.org/10.1016/j.ipl.2010.03.009
https://doi.org/10.1145/362929.362947
https://doi.org/10.1109/REAL.2001.990609
https://doi.org/10.1023/A:1025120124771
https://doi.org/10.1109/ICDCS.1994.302407
https://goo.gl/EuNhir
https://doi.org/10.1145/1250662.1250686
https://doi.org/10.1145/224056.224075
https://doi.org/10.1109/ECRTS.2011.27
https://doi.org/10.1109/SOCC.2017.8226015
https://doi.org/10.1007/s11241-013-9191-3
https://doi.org/10.1007/s11241-013-9191-3
https://doi.org/10.1023/B:TIME.0000016129.97430.c6
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html

	Abstract
	1 Introduction
	2 Related work
	3 Model
	3.1 Mode transitions
	3.2 Task model
	3.3 Platform model
	3.4 Job progression rate
	3.5 Mode model
	3.6 Model example

	4 Protocol
	4.1 Clustered platform
	4.2 acceptor

	5 Makespan upper-bound
	6 Validity
	7 Evaluation
	7.1 Complexity
	7.2 Empirical pessimism of reconfigured
	7.3 Competitive analysis of acceptor
	7.4 Handling mode independent tasks

	8 Conclusions and future work
	References

